The Sensitive Balance between the Fully Folded and Locally Unfolded Conformations of a Model Peroxiredoxin
To reduce peroxides, peroxiredoxins (Prxs) require a key “peroxidatic” Cys that, in a substrate-ready fully folded (FF) conformation, is oxidized to sulfenic acid and then, after a local unfolding (LU) of the active site, forms a disulfide bond with a second “resolving” Cys. For Salmonella typhimuri...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Easton) 2013-12, Vol.52 (48), p.8708-8721 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To reduce peroxides, peroxiredoxins (Prxs) require a key “peroxidatic” Cys that, in a substrate-ready fully folded (FF) conformation, is oxidized to sulfenic acid and then, after a local unfolding (LU) of the active site, forms a disulfide bond with a second “resolving” Cys. For Salmonella typhimurium alkyl hydroperoxide reductase C (StAhpC) and some other Prxs, the FF structure is only known for a peroxidatic Cys→Ser variant, which may not accurately represent the wild-type enzyme. Here, we obtain the structure of authentic reduced wild-type StAhpC by dithiothreitol treatment of disulfide form crystals that fortuitously accommodate both the LU and FF conformations. The unique environment of one molecule in the crystal reveals a thermodynamic linkage between the folding of the active site loop and C-terminal regions, and comparisons with the Ser variant show structural and mobility differences from which we infer that the Cys→Ser mutation stabilizes the FF active site. A structure for the C165A variant (a resolving Cys to Ala mutant) in the same crystal form reveals that this mutation destabilizes the folding of the C-terminal region. These structures prove that subtle modifications to Prx structures can substantially influence enzymatic properties. We also present a simple thermodynamic framework for understanding the various mixtures of FF and LU conformations seen in these structures. On the basis of this framework, we rationalize how physiologically relevant regulatory post-translational modifications may modulate activity, and we propose a nonconventional strategy for designing selective Prx inhibitors. |
---|---|
ISSN: | 0006-2960 1520-4995 1520-4995 |
DOI: | 10.1021/bi4011573 |