Horizontal Gene Transfer Can Rescue Prokaryotes from Muller’s Ratchet: Benefit of DNA from Dead Cells and Population Subdivision

Abstract Horizontal gene transfer (HGT) is a major factor in the evolution of prokaryotes. An intriguing question is whether HGT is maintained during evolution of prokaryotes owing to its adaptive value or is a byproduct of selection driven by other factors such as consumption of extracellular DNA (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:G3 : genes - genomes - genetics 2014-02, Vol.4 (2), p.325-339
Hauptverfasser: Takeuchi, Nobuto, Kaneko, Kunihiko, Koonin, Eugene V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Horizontal gene transfer (HGT) is a major factor in the evolution of prokaryotes. An intriguing question is whether HGT is maintained during evolution of prokaryotes owing to its adaptive value or is a byproduct of selection driven by other factors such as consumption of extracellular DNA (eDNA) as a nutrient. One hypothesis posits that HGT can restore genes inactivated by mutations and thereby prevent stochastic, irreversible deterioration of genomes in finite populations known as Muller’s ratchet. To examine this hypothesis, we developed a population genetic model of prokaryotes undergoing HGT via homologous recombination. Analysis of this model indicates that HGT can prevent the operation of Muller’s ratchet even when the source of transferred genes is eDNA that comes from dead cells and on average carries more deleterious mutations than the DNA of recipient live cells. Moreover, if HGT is sufficiently frequent and eDNA diffusion sufficiently rapid, a subdivided population is shown to be more resistant to Muller’s ratchet than an undivided population of an equal overall size. Thus, to maintain genomic information in the face of Muller’s ratchet, it is more advantageous to partition individuals into multiple subpopulations and let them “cross-reference” each other’s genetic information through HGT than to collect all individuals in one population and thereby maximize the efficacy of natural selection. Taken together, the results suggest that HGT could be an important condition for the long-term maintenance of genomic information in prokaryotes through the prevention of Muller’s ratchet.
ISSN:2160-1836
2160-1836
DOI:10.1534/g3.113.009845