The Role of Methoxy Group in the Nazarov Cyclization of 1,5-bis-(2-Methoxyphenyl)-1,4-Pentadien-3-one in the Gas Phase and Condensed Phase

ESI-protonated 1,5- bis -(2-methoxyphenyl)-1,4-pentadien-3-one (1) undergoes a gas-phase Nazarov cyclization and dissociates via expulsions of ketene and anisole. The dissociations of the [M + D] + ions are accompanied by limited HD scrambling that supports the proposed cyclization. Solution cycliza...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Society for Mass Spectrometry 2014-03, Vol.25 (3), p.398-409
Hauptverfasser: Cyriac, June, Paulose, Justin, George, Mathai, Ramesh, Marupaka, Srinivas, Ragampeta, Giblin, Daryl, Gross, Michael L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ESI-protonated 1,5- bis -(2-methoxyphenyl)-1,4-pentadien-3-one (1) undergoes a gas-phase Nazarov cyclization and dissociates via expulsions of ketene and anisole. The dissociations of the [M + D] + ions are accompanied by limited HD scrambling that supports the proposed cyclization. Solution cyclization of 1 was effected to yield the cyclic ketone, 2,3- bis -(2-methoxyphenyl)-cyclopent-2-ene-1-one, (2) on a time scale that is significantly shorter than the time for cyclization of dibenzalacetone. The dissociation characteristics of the ESI-generated [M + H] + ion of the synthetic cyclic ketone closely resemble those of 1, suggesting that gas-phase and solution cyclization products are the same. Additional mechanistic studies by density functional theory (DFT) methods of the gas-phase reaction reveals that the initial cyclization is followed by two sequential 1,2-aryl migrations that account for the observed structure of the cyclic product in the gas phase and solution. Furthermore, the DFT calculations show that the methoxy group serves as a catalyst for the proton migrations necessary for both cyclization and fragmentation after aryl migration. An isomer formed by moving the 2-methoxy to the 4-position requires relatively higher collision energy for the elimination of anisole, as is consistent with DFT calculations. Replacement of the 2-methoxy group with an OH shows that the cyclization followed by aryl migration and elimination of phenol occurs from the [M + H] + ion at low energy similar to that for 1. Figure The role of methoxy group in the Nazarov cyclization of 1,5- bis -(2-methoxyphenyl)-1,4-pentadien-3-one in the gas-phase and condensed phase by June Cyriac, Justin Paulose, M. George, Department of Chemistry, Sacred Heart College, Thevara, Cochin, Kerala, India-682013., M. Ramesh, R. Srinivas, National center for Mass Spectrometry, IICT, Hyderabad, India. Daryl Giblin and Michael L. Gross, Department of Chemistry, Washington University in St.Louis, St.Louis, USA, MO 63130.
ISSN:1044-0305
1879-1123
DOI:10.1007/s13361-013-0785-8