Single-base resolution of mouse offspring brain methylome reveals epigenome modifications caused by gestational folic acid
Epigenetic modifications, such as cytosine methylation in CpG-rich regions, regulate multiple functions in mammalian development. Maternal nutrients affecting one-carbon metabolism during gestation can exert long-term effects on the health of the progeny. Using C57BL/6 J mice, we investigated whethe...
Gespeichert in:
Veröffentlicht in: | Epigenetics & chromatin 2014-02, Vol.7 (1), p.3-3, Article 3 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Epigenetic modifications, such as cytosine methylation in CpG-rich regions, regulate multiple functions in mammalian development. Maternal nutrients affecting one-carbon metabolism during gestation can exert long-term effects on the health of the progeny. Using C57BL/6 J mice, we investigated whether the amount of ingested maternal folic acid (FA) during gestation impacted DNA methylation in the offspring's cerebral hemispheres. Reduced representation bisulfite sequencing at single-base resolution was performed to analyze genome-wide DNA methylation profiles.
We identified widespread differences in the methylation patterns of CpG and non-CpG sites of key developmental genes, including imprinted and candidate autism susceptibility genes (P |
---|---|
ISSN: | 1756-8935 1756-8935 |
DOI: | 10.1186/1756-8935-7-3 |