Sample size calculation based on exact test for assessing differential expression analysis in RNA-seq data

Sample size calculation is an important issue in the experimental design of biomedical research. For RNA-seq experiments, the sample size calculation method based on the Poisson model has been proposed; however, when there are biological replicates, RNA-seq data could exhibit variation significantly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC bioinformatics 2013-12, Vol.14 (1), p.357-357, Article 357
Hauptverfasser: Li, Chung-I, Su, Pei-Fang, Shyr, Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sample size calculation is an important issue in the experimental design of biomedical research. For RNA-seq experiments, the sample size calculation method based on the Poisson model has been proposed; however, when there are biological replicates, RNA-seq data could exhibit variation significantly greater than the mean (i.e. over-dispersion). The Poisson model cannot appropriately model the over-dispersion, and in such cases, the negative binomial model has been used as a natural extension of the Poisson model. Because the field currently lacks a sample size calculation method based on the negative binomial model for assessing differential expression analysis of RNA-seq data, we propose a method to calculate the sample size. We propose a sample size calculation method based on the exact test for assessing differential expression analysis of RNA-seq data. The proposed sample size calculation method is straightforward and not computationally intensive. Simulation studies to evaluate the performance of the proposed sample size method are presented; the results indicate our method works well, with achievement of desired power.
ISSN:1471-2105
1471-2105
DOI:10.1186/1471-2105-14-357