Thalamostriatal projections from the medial posterior and parafascicular nuclei have distinct topographic and physiologic properties
The dorsolateral striatum (DLS) is critical for executing sensorimotor behaviors that depend on stimulus-response (S-R) associations. In rats, the DLS receives it densest inputs from primary somatosensory (SI) cortex, but it also receives substantial input from the thalamus. Much of rat DLS is devot...
Gespeichert in:
Veröffentlicht in: | Journal of neurophysiology 2014-01, Vol.111 (1), p.36-50 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The dorsolateral striatum (DLS) is critical for executing sensorimotor behaviors that depend on stimulus-response (S-R) associations. In rats, the DLS receives it densest inputs from primary somatosensory (SI) cortex, but it also receives substantial input from the thalamus. Much of rat DLS is devoted to processing whisker-related information, and thalamic projections to these whisker-responsive DLS regions originate from the parafascicular (Pf) and medial posterior (POm) nuclei. To determine which thalamic nucleus is better suited for mediating S-R associations in the DLS, we compared their input-output connections and neuronal responses to repetitive whisker stimulation. Tracing experiments demonstrate that POm projects specifically to the DLS, but the Pf innervates both dorsolateral and dorsomedial parts of the striatum. The Pf nucleus is innervated by whisker-sensitive sites in the superior colliculus, and these sites also send dense projections to the zona incerta, a thalamic region that sends inhibitory projections to the POm. These data suggest that projections from POm to the DLS are suppressed by incertal inputs when the superior colliculus is activated by unexpected sensory stimuli. Simultaneous recordings with two electrodes indicate that POm neurons are more responsive and habituate significantly less than Pf neurons during repetitive whisker stimulation. Response latencies are also shorter in POm than in Pf, which is consistent with the fact that Pf receives its whisker information via synaptic relays in the superior colliculus. These findings indicate that, compared with the Pf nucleus, POm transmits somatosensory information to the DLS with a higher degree of sensory fidelity. |
---|---|
ISSN: | 0022-3077 1522-1598 |
DOI: | 10.1152/jn.00399.2013 |