Loss of NDG‐4 extends lifespan and stress resistance in Caenorhabditis elegans

Summary NDG‐4 is a predicted transmembrane acyltransferase protein that acts in the distribution of lipophilic factors. Consequently, ndg‐4 mutants lay eggs with a pale appearance due to lack of yolk, and they are resistant to sterility caused by dietary supplementation with the long‐chain omega‐6 p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aging cell 2014-02, Vol.13 (1), p.156-164
Hauptverfasser: Brejning, Jeanette, Nørgaard, Steffen, Schøler, Lone, Morthorst, Tine H., Jakobsen, Helle, Lithgow, Gordon J., Jensen, Louise T., Olsen, Anders
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary NDG‐4 is a predicted transmembrane acyltransferase protein that acts in the distribution of lipophilic factors. Consequently, ndg‐4 mutants lay eggs with a pale appearance due to lack of yolk, and they are resistant to sterility caused by dietary supplementation with the long‐chain omega‐6 polyunsaturated fatty acid dihommogamma‐linolenic acid (DGLA). Two other proteins, NRF‐5 and NRF‐6, a homolog of a mammalian secreted lipid binding protein and a NDG‐4 homolog, respectively, have previously been shown to function in the same lipid transport pathway. Here, we report that mutation of the NDG‐4 protein results in increased organismal stress resistance and lifespan. When NDG‐4 function and insulin/IGF‐1 signaling are reduced simultaneously, maximum lifespan is increased almost fivefold. Thus, longevity conferred by mutation of ndg‐4 is partially overlapping with insulin signaling. The nuclear hormone receptor NHR‐80 (HNF4 homolog) is required for longevity in germline less animals. We find that NHR‐80 is also required for longevity of ndg‐4 mutants. Moreover, we find that nrf‐5 and nrf‐6 mutants also have extended lifespan and increased stress resistance, suggesting that altered lipid transport and metabolism play key roles in determining lifespan.
ISSN:1474-9718
1474-9726
DOI:10.1111/acel.12165