Computational approaches to identify functional genetic variants in cancer genomes
International Cancer Genome Consortium members review and recommend computational approaches for identifying mutations that drive cancer progression from among the many sequence variants present in tumor genomes. The International Cancer Genome Consortium (ICGC) aims to catalog genomic abnormalities...
Gespeichert in:
Veröffentlicht in: | Nature methods 2013-08, Vol.10 (8), p.723-729 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 729 |
---|---|
container_issue | 8 |
container_start_page | 723 |
container_title | Nature methods |
container_volume | 10 |
creator | Gonzalez-Perez, Abel Mustonen, Ville Reva, Boris Ritchie, Graham R S Creixell, Pau Karchin, Rachel Vazquez, Miguel Fink, J Lynn Kassahn, Karin S Pearson, John V Bader, Gary D Boutros, Paul C Muthuswamy, Lakshmi Ouellette, B F Francis Reimand, Jüri Linding, Rune Shibata, Tatsuhiro Valencia, Alfonso Butler, Adam Dronov, Serge Flicek, Paul Shannon, Nick B Carter, Hannah Ding, Li Sander, Chris Stuart, Josh M Stein, Lincoln D Lopez-Bigas, Nuria |
description | International Cancer Genome Consortium members review and recommend computational approaches for identifying mutations that drive cancer progression from among the many sequence variants present in tumor genomes.
The International Cancer Genome Consortium (ICGC) aims to catalog genomic abnormalities in tumors from 50 different cancer types. Genome sequencing reveals hundreds to thousands of somatic mutations in each tumor but only a minority of these drive tumor progression. We present the result of discussions within the ICGC on how to address the challenge of identifying mutations that contribute to oncogenesis, tumor maintenance or response to therapy, and recommend computational techniques to annotate somatic variants and predict their impact on cancer phenotype. |
doi_str_mv | 10.1038/nmeth.2562 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3919555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A338418710</galeid><sourcerecordid>A338418710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c691t-a0df74a94d5e4c165d7abd379fb3fc27e3292a4106ca7dc80ca98d42ddf66cce3</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7ofe-AOk4I0oM-azSW4WlsFVYUEQvQ6Z5HQmS5vUpF3Yf286MzvuqhcSQpKe57zJOX2r6hVGS4yo_BB6GLdLwhvypDrFnMmFwIg_vd8jhU-qs5xvEKKUEf68OiFUIUQ4P62-rWI_TKMZfQymq80wpGjsFnI9xto7CKNv7-p2CvZAbCDA6G19a5I3Ycy1D7U1wUKaQ7GH_KJ61pouw8vDel79uPr4ffV5cf3105fV5fXCNgqPC4NcK5hRzHFgFjfcCbN2VKh2TVtLBFCiiGEYNdYIZyWyRknHiHNt01gL9Ly62OsO07oHZ8tbk-n0kHxv0p2OxuvHkeC3ehNvNVVYcc6LAN4L2DxZnaDUYM24Szwe5kmQIJoyqTAtOW8Pl6b4c4I86t5nC11nAsQpa8yYJFhILP8DxU2jmECkoG_-QG_ilEq7dxQXijCuflMb04H2oY2lLDuL6ktKJcOy_PdCLf9BleGg9zYGaH35_ijh3aENKeacoD22ECM9G0zvDKZngxX49cOmH9F7RxXg_R7IJRQ2kB6U8rfcL6X12zg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1415792459</pqid></control><display><type>article</type><title>Computational approaches to identify functional genetic variants in cancer genomes</title><source>MEDLINE</source><source>Recercat</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Gonzalez-Perez, Abel ; Mustonen, Ville ; Reva, Boris ; Ritchie, Graham R S ; Creixell, Pau ; Karchin, Rachel ; Vazquez, Miguel ; Fink, J Lynn ; Kassahn, Karin S ; Pearson, John V ; Bader, Gary D ; Boutros, Paul C ; Muthuswamy, Lakshmi ; Ouellette, B F Francis ; Reimand, Jüri ; Linding, Rune ; Shibata, Tatsuhiro ; Valencia, Alfonso ; Butler, Adam ; Dronov, Serge ; Flicek, Paul ; Shannon, Nick B ; Carter, Hannah ; Ding, Li ; Sander, Chris ; Stuart, Josh M ; Stein, Lincoln D ; Lopez-Bigas, Nuria</creator><creatorcontrib>Gonzalez-Perez, Abel ; Mustonen, Ville ; Reva, Boris ; Ritchie, Graham R S ; Creixell, Pau ; Karchin, Rachel ; Vazquez, Miguel ; Fink, J Lynn ; Kassahn, Karin S ; Pearson, John V ; Bader, Gary D ; Boutros, Paul C ; Muthuswamy, Lakshmi ; Ouellette, B F Francis ; Reimand, Jüri ; Linding, Rune ; Shibata, Tatsuhiro ; Valencia, Alfonso ; Butler, Adam ; Dronov, Serge ; Flicek, Paul ; Shannon, Nick B ; Carter, Hannah ; Ding, Li ; Sander, Chris ; Stuart, Josh M ; Stein, Lincoln D ; Lopez-Bigas, Nuria ; International Cancer Genome Consortium Mutation Pathways and Consequences Subgroup of the Bioinformatics Analyses Working Group ; the International Cancer Genome Consortium Mutation Pathways and Consequences Subgroup of the Bioinformatics Analyses Working Group</creatorcontrib><description>International Cancer Genome Consortium members review and recommend computational approaches for identifying mutations that drive cancer progression from among the many sequence variants present in tumor genomes.
The International Cancer Genome Consortium (ICGC) aims to catalog genomic abnormalities in tumors from 50 different cancer types. Genome sequencing reveals hundreds to thousands of somatic mutations in each tumor but only a minority of these drive tumor progression. We present the result of discussions within the ICGC on how to address the challenge of identifying mutations that contribute to oncogenesis, tumor maintenance or response to therapy, and recommend computational techniques to annotate somatic variants and predict their impact on cancer phenotype.</description><identifier>ISSN: 1548-7091</identifier><identifier>EISSN: 1548-7105</identifier><identifier>DOI: 10.1038/nmeth.2562</identifier><identifier>PMID: 23900255</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/114 ; 631/1647/514/2184 ; 631/208/726/649 ; 631/67/69 ; Bioinformatics ; Biological Microscopy ; Biological Techniques ; Biomedical Engineering/Biotechnology ; Cancer ; Cancer genomics ; Computational biology ; Computational Biology - methods ; Computational biology and bioinformatics ; Genetic aspects ; Genetic variance ; Genetic Variation ; Genome, Human ; Genomics ; Genotype & phenotype ; Humans ; Life Sciences ; Mutation ; Neoplasms - genetics ; perspective ; Physiological aspects ; Proteomics ; Sequence annotation ; Tumors</subject><ispartof>Nature methods, 2013-08, Vol.10 (8), p.723-729</ispartof><rights>Springer Nature America, Inc. 2013</rights><rights>COPYRIGHT 2013 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Aug 2013</rights><rights>info:eu-repo/semantics/openAccess © Springer Nature Publishing AG. Gonzalez-Perez A, Mustonen V, Reva B, Ritchie GR, Creixell P, Karchin R et al. Computational approaches to identify functional genetic variants in cancer genomes. Nat Methods. 2013; 10(8):723-9. DOI 10.1038/nmeth.2562 [<a href="http://dx.doi.org/10.1038/nmeth.2562]">http://dx.doi.org/10.1038/nmeth.2562]</a></rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c691t-a0df74a94d5e4c165d7abd379fb3fc27e3292a4106ca7dc80ca98d42ddf66cce3</citedby><cites>FETCH-LOGICAL-c691t-a0df74a94d5e4c165d7abd379fb3fc27e3292a4106ca7dc80ca98d42ddf66cce3</cites><orcidid>0000000304204839 ; 0000000305537520</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmeth.2562$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmeth.2562$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,26951,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23900255$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gonzalez-Perez, Abel</creatorcontrib><creatorcontrib>Mustonen, Ville</creatorcontrib><creatorcontrib>Reva, Boris</creatorcontrib><creatorcontrib>Ritchie, Graham R S</creatorcontrib><creatorcontrib>Creixell, Pau</creatorcontrib><creatorcontrib>Karchin, Rachel</creatorcontrib><creatorcontrib>Vazquez, Miguel</creatorcontrib><creatorcontrib>Fink, J Lynn</creatorcontrib><creatorcontrib>Kassahn, Karin S</creatorcontrib><creatorcontrib>Pearson, John V</creatorcontrib><creatorcontrib>Bader, Gary D</creatorcontrib><creatorcontrib>Boutros, Paul C</creatorcontrib><creatorcontrib>Muthuswamy, Lakshmi</creatorcontrib><creatorcontrib>Ouellette, B F Francis</creatorcontrib><creatorcontrib>Reimand, Jüri</creatorcontrib><creatorcontrib>Linding, Rune</creatorcontrib><creatorcontrib>Shibata, Tatsuhiro</creatorcontrib><creatorcontrib>Valencia, Alfonso</creatorcontrib><creatorcontrib>Butler, Adam</creatorcontrib><creatorcontrib>Dronov, Serge</creatorcontrib><creatorcontrib>Flicek, Paul</creatorcontrib><creatorcontrib>Shannon, Nick B</creatorcontrib><creatorcontrib>Carter, Hannah</creatorcontrib><creatorcontrib>Ding, Li</creatorcontrib><creatorcontrib>Sander, Chris</creatorcontrib><creatorcontrib>Stuart, Josh M</creatorcontrib><creatorcontrib>Stein, Lincoln D</creatorcontrib><creatorcontrib>Lopez-Bigas, Nuria</creatorcontrib><creatorcontrib>International Cancer Genome Consortium Mutation Pathways and Consequences Subgroup of the Bioinformatics Analyses Working Group</creatorcontrib><creatorcontrib>the International Cancer Genome Consortium Mutation Pathways and Consequences Subgroup of the Bioinformatics Analyses Working Group</creatorcontrib><title>Computational approaches to identify functional genetic variants in cancer genomes</title><title>Nature methods</title><addtitle>Nat Methods</addtitle><addtitle>Nat Methods</addtitle><description>International Cancer Genome Consortium members review and recommend computational approaches for identifying mutations that drive cancer progression from among the many sequence variants present in tumor genomes.
The International Cancer Genome Consortium (ICGC) aims to catalog genomic abnormalities in tumors from 50 different cancer types. Genome sequencing reveals hundreds to thousands of somatic mutations in each tumor but only a minority of these drive tumor progression. We present the result of discussions within the ICGC on how to address the challenge of identifying mutations that contribute to oncogenesis, tumor maintenance or response to therapy, and recommend computational techniques to annotate somatic variants and predict their impact on cancer phenotype.</description><subject>631/114</subject><subject>631/1647/514/2184</subject><subject>631/208/726/649</subject><subject>631/67/69</subject><subject>Bioinformatics</subject><subject>Biological Microscopy</subject><subject>Biological Techniques</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Cancer</subject><subject>Cancer genomics</subject><subject>Computational biology</subject><subject>Computational Biology - methods</subject><subject>Computational biology and bioinformatics</subject><subject>Genetic aspects</subject><subject>Genetic variance</subject><subject>Genetic Variation</subject><subject>Genome, Human</subject><subject>Genomics</subject><subject>Genotype & phenotype</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Mutation</subject><subject>Neoplasms - genetics</subject><subject>perspective</subject><subject>Physiological aspects</subject><subject>Proteomics</subject><subject>Sequence annotation</subject><subject>Tumors</subject><issn>1548-7091</issn><issn>1548-7105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>XX2</sourceid><recordid>eNqNkl2L1DAUhoso7ofe-AOk4I0oM-azSW4WlsFVYUEQvQ6Z5HQmS5vUpF3Yf286MzvuqhcSQpKe57zJOX2r6hVGS4yo_BB6GLdLwhvypDrFnMmFwIg_vd8jhU-qs5xvEKKUEf68OiFUIUQ4P62-rWI_TKMZfQymq80wpGjsFnI9xto7CKNv7-p2CvZAbCDA6G19a5I3Ycy1D7U1wUKaQ7GH_KJ61pouw8vDel79uPr4ffV5cf3105fV5fXCNgqPC4NcK5hRzHFgFjfcCbN2VKh2TVtLBFCiiGEYNdYIZyWyRknHiHNt01gL9Ly62OsO07oHZ8tbk-n0kHxv0p2OxuvHkeC3ehNvNVVYcc6LAN4L2DxZnaDUYM24Szwe5kmQIJoyqTAtOW8Pl6b4c4I86t5nC11nAsQpa8yYJFhILP8DxU2jmECkoG_-QG_ilEq7dxQXijCuflMb04H2oY2lLDuL6ktKJcOy_PdCLf9BleGg9zYGaH35_ijh3aENKeacoD22ECM9G0zvDKZngxX49cOmH9F7RxXg_R7IJRQ2kB6U8rfcL6X12zg</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Gonzalez-Perez, Abel</creator><creator>Mustonen, Ville</creator><creator>Reva, Boris</creator><creator>Ritchie, Graham R S</creator><creator>Creixell, Pau</creator><creator>Karchin, Rachel</creator><creator>Vazquez, Miguel</creator><creator>Fink, J Lynn</creator><creator>Kassahn, Karin S</creator><creator>Pearson, John V</creator><creator>Bader, Gary D</creator><creator>Boutros, Paul C</creator><creator>Muthuswamy, Lakshmi</creator><creator>Ouellette, B F Francis</creator><creator>Reimand, Jüri</creator><creator>Linding, Rune</creator><creator>Shibata, Tatsuhiro</creator><creator>Valencia, Alfonso</creator><creator>Butler, Adam</creator><creator>Dronov, Serge</creator><creator>Flicek, Paul</creator><creator>Shannon, Nick B</creator><creator>Carter, Hannah</creator><creator>Ding, Li</creator><creator>Sander, Chris</creator><creator>Stuart, Josh M</creator><creator>Stein, Lincoln D</creator><creator>Lopez-Bigas, Nuria</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><general>Nature Research</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7SS</scope><scope>7TK</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>XX2</scope><scope>5PM</scope><orcidid>https://orcid.org/0000000304204839</orcidid><orcidid>https://orcid.org/0000000305537520</orcidid></search><sort><creationdate>20130801</creationdate><title>Computational approaches to identify functional genetic variants in cancer genomes</title><author>Gonzalez-Perez, Abel ; Mustonen, Ville ; Reva, Boris ; Ritchie, Graham R S ; Creixell, Pau ; Karchin, Rachel ; Vazquez, Miguel ; Fink, J Lynn ; Kassahn, Karin S ; Pearson, John V ; Bader, Gary D ; Boutros, Paul C ; Muthuswamy, Lakshmi ; Ouellette, B F Francis ; Reimand, Jüri ; Linding, Rune ; Shibata, Tatsuhiro ; Valencia, Alfonso ; Butler, Adam ; Dronov, Serge ; Flicek, Paul ; Shannon, Nick B ; Carter, Hannah ; Ding, Li ; Sander, Chris ; Stuart, Josh M ; Stein, Lincoln D ; Lopez-Bigas, Nuria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c691t-a0df74a94d5e4c165d7abd379fb3fc27e3292a4106ca7dc80ca98d42ddf66cce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>631/114</topic><topic>631/1647/514/2184</topic><topic>631/208/726/649</topic><topic>631/67/69</topic><topic>Bioinformatics</topic><topic>Biological Microscopy</topic><topic>Biological Techniques</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Cancer</topic><topic>Cancer genomics</topic><topic>Computational biology</topic><topic>Computational Biology - methods</topic><topic>Computational biology and bioinformatics</topic><topic>Genetic aspects</topic><topic>Genetic variance</topic><topic>Genetic Variation</topic><topic>Genome, Human</topic><topic>Genomics</topic><topic>Genotype & phenotype</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Mutation</topic><topic>Neoplasms - genetics</topic><topic>perspective</topic><topic>Physiological aspects</topic><topic>Proteomics</topic><topic>Sequence annotation</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gonzalez-Perez, Abel</creatorcontrib><creatorcontrib>Mustonen, Ville</creatorcontrib><creatorcontrib>Reva, Boris</creatorcontrib><creatorcontrib>Ritchie, Graham R S</creatorcontrib><creatorcontrib>Creixell, Pau</creatorcontrib><creatorcontrib>Karchin, Rachel</creatorcontrib><creatorcontrib>Vazquez, Miguel</creatorcontrib><creatorcontrib>Fink, J Lynn</creatorcontrib><creatorcontrib>Kassahn, Karin S</creatorcontrib><creatorcontrib>Pearson, John V</creatorcontrib><creatorcontrib>Bader, Gary D</creatorcontrib><creatorcontrib>Boutros, Paul C</creatorcontrib><creatorcontrib>Muthuswamy, Lakshmi</creatorcontrib><creatorcontrib>Ouellette, B F Francis</creatorcontrib><creatorcontrib>Reimand, Jüri</creatorcontrib><creatorcontrib>Linding, Rune</creatorcontrib><creatorcontrib>Shibata, Tatsuhiro</creatorcontrib><creatorcontrib>Valencia, Alfonso</creatorcontrib><creatorcontrib>Butler, Adam</creatorcontrib><creatorcontrib>Dronov, Serge</creatorcontrib><creatorcontrib>Flicek, Paul</creatorcontrib><creatorcontrib>Shannon, Nick B</creatorcontrib><creatorcontrib>Carter, Hannah</creatorcontrib><creatorcontrib>Ding, Li</creatorcontrib><creatorcontrib>Sander, Chris</creatorcontrib><creatorcontrib>Stuart, Josh M</creatorcontrib><creatorcontrib>Stein, Lincoln D</creatorcontrib><creatorcontrib>Lopez-Bigas, Nuria</creatorcontrib><creatorcontrib>International Cancer Genome Consortium Mutation Pathways and Consequences Subgroup of the Bioinformatics Analyses Working Group</creatorcontrib><creatorcontrib>the International Cancer Genome Consortium Mutation Pathways and Consequences Subgroup of the Bioinformatics Analyses Working Group</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Recercat</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gonzalez-Perez, Abel</au><au>Mustonen, Ville</au><au>Reva, Boris</au><au>Ritchie, Graham R S</au><au>Creixell, Pau</au><au>Karchin, Rachel</au><au>Vazquez, Miguel</au><au>Fink, J Lynn</au><au>Kassahn, Karin S</au><au>Pearson, John V</au><au>Bader, Gary D</au><au>Boutros, Paul C</au><au>Muthuswamy, Lakshmi</au><au>Ouellette, B F Francis</au><au>Reimand, Jüri</au><au>Linding, Rune</au><au>Shibata, Tatsuhiro</au><au>Valencia, Alfonso</au><au>Butler, Adam</au><au>Dronov, Serge</au><au>Flicek, Paul</au><au>Shannon, Nick B</au><au>Carter, Hannah</au><au>Ding, Li</au><au>Sander, Chris</au><au>Stuart, Josh M</au><au>Stein, Lincoln D</au><au>Lopez-Bigas, Nuria</au><aucorp>International Cancer Genome Consortium Mutation Pathways and Consequences Subgroup of the Bioinformatics Analyses Working Group</aucorp><aucorp>the International Cancer Genome Consortium Mutation Pathways and Consequences Subgroup of the Bioinformatics Analyses Working Group</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational approaches to identify functional genetic variants in cancer genomes</atitle><jtitle>Nature methods</jtitle><stitle>Nat Methods</stitle><addtitle>Nat Methods</addtitle><date>2013-08-01</date><risdate>2013</risdate><volume>10</volume><issue>8</issue><spage>723</spage><epage>729</epage><pages>723-729</pages><issn>1548-7091</issn><eissn>1548-7105</eissn><abstract>International Cancer Genome Consortium members review and recommend computational approaches for identifying mutations that drive cancer progression from among the many sequence variants present in tumor genomes.
The International Cancer Genome Consortium (ICGC) aims to catalog genomic abnormalities in tumors from 50 different cancer types. Genome sequencing reveals hundreds to thousands of somatic mutations in each tumor but only a minority of these drive tumor progression. We present the result of discussions within the ICGC on how to address the challenge of identifying mutations that contribute to oncogenesis, tumor maintenance or response to therapy, and recommend computational techniques to annotate somatic variants and predict their impact on cancer phenotype.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>23900255</pmid><doi>10.1038/nmeth.2562</doi><tpages>7</tpages><orcidid>https://orcid.org/0000000304204839</orcidid><orcidid>https://orcid.org/0000000305537520</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1548-7091 |
ispartof | Nature methods, 2013-08, Vol.10 (8), p.723-729 |
issn | 1548-7091 1548-7105 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3919555 |
source | MEDLINE; Recercat; Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 631/114 631/1647/514/2184 631/208/726/649 631/67/69 Bioinformatics Biological Microscopy Biological Techniques Biomedical Engineering/Biotechnology Cancer Cancer genomics Computational biology Computational Biology - methods Computational biology and bioinformatics Genetic aspects Genetic variance Genetic Variation Genome, Human Genomics Genotype & phenotype Humans Life Sciences Mutation Neoplasms - genetics perspective Physiological aspects Proteomics Sequence annotation Tumors |
title | Computational approaches to identify functional genetic variants in cancer genomes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A45%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20approaches%20to%20identify%20functional%20genetic%20variants%20in%20cancer%20genomes&rft.jtitle=Nature%20methods&rft.au=Gonzalez-Perez,%20Abel&rft.aucorp=International%20Cancer%20Genome%20Consortium%20Mutation%20Pathways%20and%20Consequences%20Subgroup%20of%20the%20Bioinformatics%20Analyses%20Working%20Group&rft.date=2013-08-01&rft.volume=10&rft.issue=8&rft.spage=723&rft.epage=729&rft.pages=723-729&rft.issn=1548-7091&rft.eissn=1548-7105&rft_id=info:doi/10.1038/nmeth.2562&rft_dat=%3Cgale_pubme%3EA338418710%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1415792459&rft_id=info:pmid/23900255&rft_galeid=A338418710&rfr_iscdi=true |