Computational approaches to identify functional genetic variants in cancer genomes

International Cancer Genome Consortium members review and recommend computational approaches for identifying mutations that drive cancer progression from among the many sequence variants present in tumor genomes. The International Cancer Genome Consortium (ICGC) aims to catalog genomic abnormalities...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature methods 2013-08, Vol.10 (8), p.723-729
Hauptverfasser: Gonzalez-Perez, Abel, Mustonen, Ville, Reva, Boris, Ritchie, Graham R S, Creixell, Pau, Karchin, Rachel, Vazquez, Miguel, Fink, J Lynn, Kassahn, Karin S, Pearson, John V, Bader, Gary D, Boutros, Paul C, Muthuswamy, Lakshmi, Ouellette, B F Francis, Reimand, Jüri, Linding, Rune, Shibata, Tatsuhiro, Valencia, Alfonso, Butler, Adam, Dronov, Serge, Flicek, Paul, Shannon, Nick B, Carter, Hannah, Ding, Li, Sander, Chris, Stuart, Josh M, Stein, Lincoln D, Lopez-Bigas, Nuria
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:International Cancer Genome Consortium members review and recommend computational approaches for identifying mutations that drive cancer progression from among the many sequence variants present in tumor genomes. The International Cancer Genome Consortium (ICGC) aims to catalog genomic abnormalities in tumors from 50 different cancer types. Genome sequencing reveals hundreds to thousands of somatic mutations in each tumor but only a minority of these drive tumor progression. We present the result of discussions within the ICGC on how to address the challenge of identifying mutations that contribute to oncogenesis, tumor maintenance or response to therapy, and recommend computational techniques to annotate somatic variants and predict their impact on cancer phenotype.
ISSN:1548-7091
1548-7105
DOI:10.1038/nmeth.2562