Glucocorticoid receptor regulation of action selection and prefrontal cortical dendritic spines

We recently reported that prolonged exposure to the glucocorticoid receptor (GR) ligand corticosterone impairs decision-making that is dependent on the predictive relationship between an action and its outcome (Gourley et al.; Proceedings of the National Academy of Sciences, 2012). Additionally, acu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communicative & integrative biology 2013-11, Vol.6 (6), p.e26068-e26068
Hauptverfasser: Swanson, Andrew M, Shapiro, Lauren P, Whyte, Alonzo J, Gourley, Shannon L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We recently reported that prolonged exposure to the glucocorticoid receptor (GR) ligand corticosterone impairs decision-making that is dependent on the predictive relationship between an action and its outcome (Gourley et al.; Proceedings of the National Academy of Sciences, 2012). Additionally, acute GR blockade, when paired with action-outcome conditioning, also blocks new learning. We then showed that dendritic spines in the prelimbic prefrontal cortex remodeled under both conditions. Nonetheless, the relationship between deep-layer dendritic spines and outcome-based decision-making remains opaque. We report here that a history of prolonged corticosterone exposure increases dendritic spine density in deep-layer prelimbic cortex. When spines are imaged simultaneously with corticosteroid exposure (i.e., without a washout period), dendritic spine densities are, however, reduced. Thus, the morphological response of deep-layer prelimbic cortical neurons to prolonged corticosteroid exposure may be quite dynamic, with spine elimination during a period of chronic exposure and spine proliferation during a subsequent washout period. We provide evidence, using a Rho-kinase inhibitor, that GR-mediated dendritic spine remodeling is causally related to complex decision-making. Finally, we conclude this report with evidence that a history of early-life (adolescent) GR blockade, unlike acute blockade in adulthood, enhances subsequent outcome-based decision-making. Together, our findings suggest that physiological levels of GR binding enable an organism to learn about the predictive relationship between an action and its outcome, but a history of GR blockade may, under some circumstances, also have beneficial consequences.
ISSN:1942-0889
1942-0889
DOI:10.4161/cib.26068