Construction and identification of the pshRNA-CACNA1G-SH-SY5Ycells targeted to silence Cav3.1 mRNA expression
T-type calcium channels are a class of low voltage-dependent calcium channels that may be activated following minor depolarizations of the cell membrane. Cav3.1 is the dominant subtype of the T-type calcium channel in SH-SY5Y cells. T-type channels play a key role in the regulation of the intracellu...
Gespeichert in:
Veröffentlicht in: | Biomedical reports 2013-07, Vol.1 (4), p.669-673 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | T-type calcium channels are a class of low voltage-dependent calcium channels that may be activated following minor depolarizations of the cell membrane. Cav3.1 is the dominant subtype of the T-type calcium channel in SH-SY5Y cells. T-type channels play a key role in the regulation of the intracellular calcium concentration, which is involved in the neurotoxic effect of local anesthetics. However, there is a lack of specific inhibitors of T-type calcium channels. The existing T-type calcium channel inhibitors exhibit poor specificity and may block the high voltage-dependent calcium channels, such as the L- and N-type channels. Furthermore, there is no selectivity to the subtype of the T-type calcium channel. Therefore, the development of a specific T-type calcium channel inhibitor may contribute to the elucidation of the functions and characteristics of T-type calcium channels. The aim of this study was to silence the Cav3.1 mRNA expression in SH-SY5Y cells via the RNA interference (RNAi) method in order to construct pshRNA-CACNA1G-SH-SY5Y cells and assess Cav3.1 mRNA and protein expression by western blot analysis and reverse transcription-polymerase chain reaction (RT-PCR) to identify the constructed cell line. The results demonstrated that Cav3.1 mRNA and protein expression were significantly reduced following transfection with the SH-SY5Y cells by the supernatant liquors. The results also demonstrated that the pshRNA-CACNA1G-SH-SY5Y cells were successfully constructed. These findings may contribute to the elucidation of the functions of Cav3.1 in SH-SY5Y cells. |
---|---|
ISSN: | 2049-9434 2049-9442 |
DOI: | 10.3892/br.2013.117 |