Testicular biodistribution of 450 nm fluorescent latex particles after intramuscular injection in mice

The significant expansion in the use of nanoparticles and submicron particles during the last 20 years has led to increasing concern about their potential toxicity to humans and particularly their impact on male fertility. Currently, an insufficient number of studies have focused on the testicular b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedical microdevices 2013-06, Vol.15 (3), p.427-436
Hauptverfasser: Klein, J.-P., Boudard, D., Cadusseau, J., Palle, S., Forest, V., Pourchez, J., Cottier, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The significant expansion in the use of nanoparticles and submicron particles during the last 20 years has led to increasing concern about their potential toxicity to humans and particularly their impact on male fertility. Currently, an insufficient number of studies have focused on the testicular biodistribution of particles. The aim of our study was to assess the distribution of 450 nm fluorescent particles in mouse testes after intramuscular injection. To this end, testes were removed from 5 groups of 3 mice each at 1 h (H1), 4 days (D4), 21 days (D21), 45 days (D45) and 90 days (D90) after the injection of 7.28 × 10 9 particles in the tibialis anterior muscles of each mouse. We examined histological sections from these samples by epifluorescence microscopy and confocal microscopy and identified testicular biodistribution of a small number of particles in groups H1, D4, D21, D45 and D90. Using CD11b immunostaining, we showed that particles were not carried into the testis by macrophages. The intratesticular repartition of particles mainly followed testicular vascularization. Finally, we found some particles in seminiferous tubules but could not determine if the blood–testis barrier was crossed.
ISSN:1387-2176
1572-8781
DOI:10.1007/s10544-013-9741-4