Uterine Selection of Human Embryos at Implantation

Human embryos frequently harbor large-scale complex chromosomal errors that impede normal development. Affected embryos may fail to implant although many first breach the endometrial epithelium and embed in the decidualizing stroma before being rejected via mechanisms that are poorly understood. Her...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2014-02, Vol.4 (1), p.3894-3894, Article 3894
Hauptverfasser: Brosens, Jan J., Salker, Madhuri S., Teklenburg, Gijs, Nautiyal, Jaya, Salter, Scarlett, Lucas, Emma S., Steel, Jennifer H., Christian, Mark, Chan, Yi-Wah, Boomsma, Carolien M., Moore, Jonathan D., Hartshorne, Geraldine M., Šućurović, Sandra, Mulac-Jericevic, Biserka, Heijnen, Cobi J., Quenby, Siobhan, Groot Koerkamp, Marian J., Holstege, Frank C. P., Shmygol, Anatoly, Macklon, Nick S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Human embryos frequently harbor large-scale complex chromosomal errors that impede normal development. Affected embryos may fail to implant although many first breach the endometrial epithelium and embed in the decidualizing stroma before being rejected via mechanisms that are poorly understood. Here we show that developmentally impaired human embryos elicit an endoplasmic stress response in human decidual cells. A stress response was also evident upon in vivo exposure of mouse uteri to culture medium conditioned by low-quality human embryos. By contrast, signals emanating from developmentally competent embryos activated a focused gene network enriched in metabolic enzymes and implantation factors. We further show that trypsin, a serine protease released by pre-implantation embryos, elicits Ca 2+ signaling in endometrial epithelial cells. Competent human embryos triggered short-lived oscillatory Ca 2+ fluxes whereas low-quality embryos caused a heightened and prolonged Ca 2+ response. Thus, distinct positive and negative mechanisms contribute to active selection of human embryos at implantation.
ISSN:2045-2322
2045-2322
DOI:10.1038/srep03894