Expression-level optimization of a multi-enzyme pathway in the absence of a high-throughput assay

Engineered metabolic pathways often suffer from flux imbalances that can overburden the cell and accumulate intermediate metabolites, resulting in reduced product titers. One way to alleviate such imbalances is to adjust the expression levels of the constituent enzymes using a combinatorial expressi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2013-12, Vol.41 (22), p.10668-10678
Hauptverfasser: Lee, Michael E, Aswani, Anil, Han, Audrey S, Tomlin, Claire J, Dueber, John E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Engineered metabolic pathways often suffer from flux imbalances that can overburden the cell and accumulate intermediate metabolites, resulting in reduced product titers. One way to alleviate such imbalances is to adjust the expression levels of the constituent enzymes using a combinatorial expression library. Typically, this approach requires high-throughput assays, which are unfortunately unavailable for the vast majority of desirable target compounds. To address this, we applied regression modeling to enable expression optimization using only a small number of measurements. We characterized a set of constitutive promoters in Saccharomyces cerevisiae that spanned a wide range of expression and maintained their relative strengths irrespective of the coding sequence. We used a standardized assembly strategy to construct a combinatorial library and express for the first time in yeast the five-enzyme violacein biosynthetic pathway. We trained a regression model on a random sample comprising 3% of the total library, and then used that model to predict genotypes that would preferentially produce each of the products in this highly branched pathway. This generalizable method should prove useful in engineering new pathways for the sustainable production of small molecules.
ISSN:0305-1048
1362-4962
DOI:10.1093/nar/gkt809