The diaryl oxazole PC-046 is a tubulin-binding agent with experimental anti-tumor efficacy in hematologic cancers
Summary Microtubule targeting agents are among the most widely used chemotherapeutics for both solid and hematological malignancies. This study characterizes the diaryl-oxazole based anticancer agent PC-046, which was originally identified for development based on selective activity in deleted in pa...
Gespeichert in:
Veröffentlicht in: | Investigational new drugs 2013-12, Vol.31 (6), p.1616-1625 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Summary
Microtubule targeting agents are among the most widely used chemotherapeutics for both solid and hematological malignancies. This study characterizes the diaryl-oxazole based anticancer agent PC-046, which was originally identified for development based on selective activity in deleted in pancreas cancer locus 4 (DPC4/SMAD4) deficient tumors. PC-046 has growth inhibitory activity in a variety of tumor types in vitro, and efficacy in SCID mice was shown in human tumor xenografts of MV-4-11 acute myeloid leukemia, MM.1S multiple myeloma, and DU-145 prostate cancer. Pharmacokinetic studies demonstrated relatively high oral bioavailability (71 %) with distribution to both plasma and bone marrow. No myelosuppression was seen in non-tumor bearing SCID mice given a single dose just under the acute lethal dose. The COMPARE algorithm in the NCI-60 cell line panel demonstrated that PC-046 closely correlated to other known tubulin destabilizing agents (correlation coefficients ≈0.7 for vincristine and vinblastine). Mechanism of action studies showed cell cycle arrest in metaphase and inhibition of tubulin polymerization. Overall, these studies show that PC-046 is a synthetically-derived, small molecule microtubule destabilizing agent. Advantages over existing microtubule destabilizing agents include ease of synthesis, lack of MDR cross-resistance, good oral bioavailability and the lack of acute myelotoxicity. |
---|---|
ISSN: | 0167-6997 1573-0646 |
DOI: | 10.1007/s10637-013-0019-8 |