Naturally occurring variation in copia expression is due to both element (cis) and host (trans) regulatory variation

Significant differences in levels of copia [Drosophila long terminal repeat (LTR) retrotransposon] expression exist among six species representing the Drosophila melanogaster species complex (D. melanogaster, Drosophila mauritiana, Drosophila simulans, Drosophila sechellia, Drosophila yakuba, and Dr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1996-07, Vol.93 (14), p.7097-7102
Hauptverfasser: Matyunina, L.V, Jordan, I.K, McDonald, J.F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7102
container_issue 14
container_start_page 7097
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 93
creator Matyunina, L.V
Jordan, I.K
McDonald, J.F
description Significant differences in levels of copia [Drosophila long terminal repeat (LTR) retrotransposon] expression exist among six species representing the Drosophila melanogaster species complex (D. melanogaster, Drosophila mauritiana, Drosophila simulans, Drosophila sechellia, Drosophila yakuba, and Drosophila erecta) and a more distantly related species (Drosophila willistoni). These differences in expression are correlated with major size variation mapping to putative regulatory regions of the copia 5' LTR and adjacent untranslated leader region (ULR). Sequence analysis indicates that these size variants were derived from a series of regional duplication events. The ability of the copia LTR-ULR size variants to drive expression of a bacterial chloramphenicol acetyltransferase reporter gene was tested in each of the seven species. The results indicate that both element-encoded (cis) and host-genome-encoded (trans) genetic differences are responsible for the variability in copia expression within and between Drosophila species. This finding indicates that models purporting to explain the dynamics and distribution of retrotransposons in natural populations must consider the potential impact of both element-encoded and host-genome-encoded regulatory variation to be valid. We propose that interelement selection among retrotransposons may provide a molecular drive mechanism for the evolution of eukaryotic enhancers which can be subsequently distributed throughout the genome by retrotransposition.
doi_str_mv 10.1073/pnas.93.14.7097
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_38942</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>39543</jstor_id><sourcerecordid>39543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c542t-44084ce45a7c7fef673743009f38de95d0410770116fb54e08a7c07e3ca41f3e3</originalsourceid><addsrcrecordid>eNqFkctvEzEQxlcIVELhjIQEWBx4HDYdv9ZriQuqeEkVHKBny3G8iaONvbW9VfPf4yUhBQ5wsjzfb0bzzVdVjzHMMQh6Nnid5pLOMZsLkOJONcMgcd0wCXerGQARdcsIu189SGkDAJK3cFKdtI0kkuNZlb_oPEbd9zsUjBljdH6FrnV0OrvgkfPIhMFpZG-GaFP6WUtoOVqUA1qEvEa2t1vrM3ptXHqDtF-idUjlm6P2pRDtaux1DnF3O_Zhda_TfbKPDu9pdfnh_ffzT_XF14-fz99d1IYzkmvGoGXGMq6FEZ3tGkEFo8VDR9ullXwJrNxAAMZNt-DMQltAEJYazXBHLT2t3u7nDuNia5emrFmsqiG6rY47FbRTfyrerdUqXCvaSkZK-8tDewxXo01ZbV0ytu-1t2FMSrS4oUDpf0HMG8JbMoEv_gI3YYy-3EARwJQQCRN0todMDClF2x0XxqCm0NUUupJUYaam0EvH0999HvlDykV_ddCnxl_q7QDVjX2f7U0u5LN_kgV4sgc2qWR6JKjkbNr8-V7sdFB6FV1Sl98mY4A5AUIx_QGmkNPV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201322903</pqid></control><display><type>article</type><title>Naturally occurring variation in copia expression is due to both element (cis) and host (trans) regulatory variation</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Matyunina, L.V ; Jordan, I.K ; McDonald, J.F</creator><creatorcontrib>Matyunina, L.V ; Jordan, I.K ; McDonald, J.F</creatorcontrib><description>Significant differences in levels of copia [Drosophila long terminal repeat (LTR) retrotransposon] expression exist among six species representing the Drosophila melanogaster species complex (D. melanogaster, Drosophila mauritiana, Drosophila simulans, Drosophila sechellia, Drosophila yakuba, and Drosophila erecta) and a more distantly related species (Drosophila willistoni). These differences in expression are correlated with major size variation mapping to putative regulatory regions of the copia 5' LTR and adjacent untranslated leader region (ULR). Sequence analysis indicates that these size variants were derived from a series of regional duplication events. The ability of the copia LTR-ULR size variants to drive expression of a bacterial chloramphenicol acetyltransferase reporter gene was tested in each of the seven species. The results indicate that both element-encoded (cis) and host-genome-encoded (trans) genetic differences are responsible for the variability in copia expression within and between Drosophila species. This finding indicates that models purporting to explain the dynamics and distribution of retrotransposons in natural populations must consider the potential impact of both element-encoded and host-genome-encoded regulatory variation to be valid. We propose that interelement selection among retrotransposons may provide a molecular drive mechanism for the evolution of eukaryotic enhancers which can be subsequently distributed throughout the genome by retrotransposition.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.93.14.7097</identifier><identifier>PMID: 8692951</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>Animals ; Base Sequence ; Biological Evolution ; chloramphenicol acetyltransferase ; Chloramphenicol O-Acetyltransferase - biosynthesis ; DNA Primers ; Drosophila ; Drosophila - genetics ; Drosophila - metabolism ; Drosophila erecta ; Drosophila mauritiana ; Drosophila melanogaster ; Drosophila melanogaster - genetics ; Drosophila melanogaster - metabolism ; Drosophila sechellia ; Drosophila simulans ; Drosophila willistoni ; Drosophila yakuba ; duplication ; Evolution ; genbank/u60291 ; genbank/u60292 ; genbank/u60293 ; gene expression ; Genes, Insect ; genetic regulation ; Genetic Variation ; Genetics ; Genomes ; HSP70 Heat-Shock Proteins - biosynthesis ; Insect larvae ; Insects ; long terminal repeat ; messenger RNA ; Molecular Sequence Data ; nucleotide sequences ; Plasmids ; Polymerase chain reaction ; recombinant DNA ; Recombinant Fusion Proteins - biosynthesis ; Regulatory Sequences, Nucleic Acid ; repetitive sequences ; Repetitive Sequences, Nucleic Acid ; Retroelements ; Retrotransposons ; RNA ; species differences ; Species Specificity ; Transposons ; untranslated leader sequence</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1996-07, Vol.93 (14), p.7097-7102</ispartof><rights>Copyright 1996 National Academy of Sciences</rights><rights>Copyright National Academy of Sciences Jul 9, 1996</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c542t-44084ce45a7c7fef673743009f38de95d0410770116fb54e08a7c07e3ca41f3e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/93/14.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/39543$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/39543$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,800,882,27905,27906,53772,53774,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8692951$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Matyunina, L.V</creatorcontrib><creatorcontrib>Jordan, I.K</creatorcontrib><creatorcontrib>McDonald, J.F</creatorcontrib><title>Naturally occurring variation in copia expression is due to both element (cis) and host (trans) regulatory variation</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Significant differences in levels of copia [Drosophila long terminal repeat (LTR) retrotransposon] expression exist among six species representing the Drosophila melanogaster species complex (D. melanogaster, Drosophila mauritiana, Drosophila simulans, Drosophila sechellia, Drosophila yakuba, and Drosophila erecta) and a more distantly related species (Drosophila willistoni). These differences in expression are correlated with major size variation mapping to putative regulatory regions of the copia 5' LTR and adjacent untranslated leader region (ULR). Sequence analysis indicates that these size variants were derived from a series of regional duplication events. The ability of the copia LTR-ULR size variants to drive expression of a bacterial chloramphenicol acetyltransferase reporter gene was tested in each of the seven species. The results indicate that both element-encoded (cis) and host-genome-encoded (trans) genetic differences are responsible for the variability in copia expression within and between Drosophila species. This finding indicates that models purporting to explain the dynamics and distribution of retrotransposons in natural populations must consider the potential impact of both element-encoded and host-genome-encoded regulatory variation to be valid. We propose that interelement selection among retrotransposons may provide a molecular drive mechanism for the evolution of eukaryotic enhancers which can be subsequently distributed throughout the genome by retrotransposition.</description><subject>Animals</subject><subject>Base Sequence</subject><subject>Biological Evolution</subject><subject>chloramphenicol acetyltransferase</subject><subject>Chloramphenicol O-Acetyltransferase - biosynthesis</subject><subject>DNA Primers</subject><subject>Drosophila</subject><subject>Drosophila - genetics</subject><subject>Drosophila - metabolism</subject><subject>Drosophila erecta</subject><subject>Drosophila mauritiana</subject><subject>Drosophila melanogaster</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila melanogaster - metabolism</subject><subject>Drosophila sechellia</subject><subject>Drosophila simulans</subject><subject>Drosophila willistoni</subject><subject>Drosophila yakuba</subject><subject>duplication</subject><subject>Evolution</subject><subject>genbank/u60291</subject><subject>genbank/u60292</subject><subject>genbank/u60293</subject><subject>gene expression</subject><subject>Genes, Insect</subject><subject>genetic regulation</subject><subject>Genetic Variation</subject><subject>Genetics</subject><subject>Genomes</subject><subject>HSP70 Heat-Shock Proteins - biosynthesis</subject><subject>Insect larvae</subject><subject>Insects</subject><subject>long terminal repeat</subject><subject>messenger RNA</subject><subject>Molecular Sequence Data</subject><subject>nucleotide sequences</subject><subject>Plasmids</subject><subject>Polymerase chain reaction</subject><subject>recombinant DNA</subject><subject>Recombinant Fusion Proteins - biosynthesis</subject><subject>Regulatory Sequences, Nucleic Acid</subject><subject>repetitive sequences</subject><subject>Repetitive Sequences, Nucleic Acid</subject><subject>Retroelements</subject><subject>Retrotransposons</subject><subject>RNA</subject><subject>species differences</subject><subject>Species Specificity</subject><subject>Transposons</subject><subject>untranslated leader sequence</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctvEzEQxlcIVELhjIQEWBx4HDYdv9ZriQuqeEkVHKBny3G8iaONvbW9VfPf4yUhBQ5wsjzfb0bzzVdVjzHMMQh6Nnid5pLOMZsLkOJONcMgcd0wCXerGQARdcsIu189SGkDAJK3cFKdtI0kkuNZlb_oPEbd9zsUjBljdH6FrnV0OrvgkfPIhMFpZG-GaFP6WUtoOVqUA1qEvEa2t1vrM3ptXHqDtF-idUjlm6P2pRDtaux1DnF3O_Zhda_TfbKPDu9pdfnh_ffzT_XF14-fz99d1IYzkmvGoGXGMq6FEZ3tGkEFo8VDR9ullXwJrNxAAMZNt-DMQltAEJYazXBHLT2t3u7nDuNia5emrFmsqiG6rY47FbRTfyrerdUqXCvaSkZK-8tDewxXo01ZbV0ytu-1t2FMSrS4oUDpf0HMG8JbMoEv_gI3YYy-3EARwJQQCRN0todMDClF2x0XxqCm0NUUupJUYaam0EvH0999HvlDykV_ddCnxl_q7QDVjX2f7U0u5LN_kgV4sgc2qWR6JKjkbNr8-V7sdFB6FV1Sl98mY4A5AUIx_QGmkNPV</recordid><startdate>19960709</startdate><enddate>19960709</enddate><creator>Matyunina, L.V</creator><creator>Jordan, I.K</creator><creator>McDonald, J.F</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19960709</creationdate><title>Naturally occurring variation in copia expression is due to both element (cis) and host (trans) regulatory variation</title><author>Matyunina, L.V ; Jordan, I.K ; McDonald, J.F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c542t-44084ce45a7c7fef673743009f38de95d0410770116fb54e08a7c07e3ca41f3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Animals</topic><topic>Base Sequence</topic><topic>Biological Evolution</topic><topic>chloramphenicol acetyltransferase</topic><topic>Chloramphenicol O-Acetyltransferase - biosynthesis</topic><topic>DNA Primers</topic><topic>Drosophila</topic><topic>Drosophila - genetics</topic><topic>Drosophila - metabolism</topic><topic>Drosophila erecta</topic><topic>Drosophila mauritiana</topic><topic>Drosophila melanogaster</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila melanogaster - metabolism</topic><topic>Drosophila sechellia</topic><topic>Drosophila simulans</topic><topic>Drosophila willistoni</topic><topic>Drosophila yakuba</topic><topic>duplication</topic><topic>Evolution</topic><topic>genbank/u60291</topic><topic>genbank/u60292</topic><topic>genbank/u60293</topic><topic>gene expression</topic><topic>Genes, Insect</topic><topic>genetic regulation</topic><topic>Genetic Variation</topic><topic>Genetics</topic><topic>Genomes</topic><topic>HSP70 Heat-Shock Proteins - biosynthesis</topic><topic>Insect larvae</topic><topic>Insects</topic><topic>long terminal repeat</topic><topic>messenger RNA</topic><topic>Molecular Sequence Data</topic><topic>nucleotide sequences</topic><topic>Plasmids</topic><topic>Polymerase chain reaction</topic><topic>recombinant DNA</topic><topic>Recombinant Fusion Proteins - biosynthesis</topic><topic>Regulatory Sequences, Nucleic Acid</topic><topic>repetitive sequences</topic><topic>Repetitive Sequences, Nucleic Acid</topic><topic>Retroelements</topic><topic>Retrotransposons</topic><topic>RNA</topic><topic>species differences</topic><topic>Species Specificity</topic><topic>Transposons</topic><topic>untranslated leader sequence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matyunina, L.V</creatorcontrib><creatorcontrib>Jordan, I.K</creatorcontrib><creatorcontrib>McDonald, J.F</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matyunina, L.V</au><au>Jordan, I.K</au><au>McDonald, J.F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Naturally occurring variation in copia expression is due to both element (cis) and host (trans) regulatory variation</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1996-07-09</date><risdate>1996</risdate><volume>93</volume><issue>14</issue><spage>7097</spage><epage>7102</epage><pages>7097-7102</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Significant differences in levels of copia [Drosophila long terminal repeat (LTR) retrotransposon] expression exist among six species representing the Drosophila melanogaster species complex (D. melanogaster, Drosophila mauritiana, Drosophila simulans, Drosophila sechellia, Drosophila yakuba, and Drosophila erecta) and a more distantly related species (Drosophila willistoni). These differences in expression are correlated with major size variation mapping to putative regulatory regions of the copia 5' LTR and adjacent untranslated leader region (ULR). Sequence analysis indicates that these size variants were derived from a series of regional duplication events. The ability of the copia LTR-ULR size variants to drive expression of a bacterial chloramphenicol acetyltransferase reporter gene was tested in each of the seven species. The results indicate that both element-encoded (cis) and host-genome-encoded (trans) genetic differences are responsible for the variability in copia expression within and between Drosophila species. This finding indicates that models purporting to explain the dynamics and distribution of retrotransposons in natural populations must consider the potential impact of both element-encoded and host-genome-encoded regulatory variation to be valid. We propose that interelement selection among retrotransposons may provide a molecular drive mechanism for the evolution of eukaryotic enhancers which can be subsequently distributed throughout the genome by retrotransposition.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>8692951</pmid><doi>10.1073/pnas.93.14.7097</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 1996-07, Vol.93 (14), p.7097-7102
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_38942
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Base Sequence
Biological Evolution
chloramphenicol acetyltransferase
Chloramphenicol O-Acetyltransferase - biosynthesis
DNA Primers
Drosophila
Drosophila - genetics
Drosophila - metabolism
Drosophila erecta
Drosophila mauritiana
Drosophila melanogaster
Drosophila melanogaster - genetics
Drosophila melanogaster - metabolism
Drosophila sechellia
Drosophila simulans
Drosophila willistoni
Drosophila yakuba
duplication
Evolution
genbank/u60291
genbank/u60292
genbank/u60293
gene expression
Genes, Insect
genetic regulation
Genetic Variation
Genetics
Genomes
HSP70 Heat-Shock Proteins - biosynthesis
Insect larvae
Insects
long terminal repeat
messenger RNA
Molecular Sequence Data
nucleotide sequences
Plasmids
Polymerase chain reaction
recombinant DNA
Recombinant Fusion Proteins - biosynthesis
Regulatory Sequences, Nucleic Acid
repetitive sequences
Repetitive Sequences, Nucleic Acid
Retroelements
Retrotransposons
RNA
species differences
Species Specificity
Transposons
untranslated leader sequence
title Naturally occurring variation in copia expression is due to both element (cis) and host (trans) regulatory variation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T08%3A35%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Naturally%20occurring%20variation%20in%20copia%20expression%20is%20due%20to%20both%20element%20(cis)%20and%20host%20(trans)%20regulatory%20variation&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Matyunina,%20L.V&rft.date=1996-07-09&rft.volume=93&rft.issue=14&rft.spage=7097&rft.epage=7102&rft.pages=7097-7102&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.93.14.7097&rft_dat=%3Cjstor_pubme%3E39543%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201322903&rft_id=info:pmid/8692951&rft_jstor_id=39543&rfr_iscdi=true