Naturally occurring variation in copia expression is due to both element (cis) and host (trans) regulatory variation
Significant differences in levels of copia [Drosophila long terminal repeat (LTR) retrotransposon] expression exist among six species representing the Drosophila melanogaster species complex (D. melanogaster, Drosophila mauritiana, Drosophila simulans, Drosophila sechellia, Drosophila yakuba, and Dr...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 1996-07, Vol.93 (14), p.7097-7102 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7102 |
---|---|
container_issue | 14 |
container_start_page | 7097 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 93 |
creator | Matyunina, L.V Jordan, I.K McDonald, J.F |
description | Significant differences in levels of copia [Drosophila long terminal repeat (LTR) retrotransposon] expression exist among six species representing the Drosophila melanogaster species complex (D. melanogaster, Drosophila mauritiana, Drosophila simulans, Drosophila sechellia, Drosophila yakuba, and Drosophila erecta) and a more distantly related species (Drosophila willistoni). These differences in expression are correlated with major size variation mapping to putative regulatory regions of the copia 5' LTR and adjacent untranslated leader region (ULR). Sequence analysis indicates that these size variants were derived from a series of regional duplication events. The ability of the copia LTR-ULR size variants to drive expression of a bacterial chloramphenicol acetyltransferase reporter gene was tested in each of the seven species. The results indicate that both element-encoded (cis) and host-genome-encoded (trans) genetic differences are responsible for the variability in copia expression within and between Drosophila species. This finding indicates that models purporting to explain the dynamics and distribution of retrotransposons in natural populations must consider the potential impact of both element-encoded and host-genome-encoded regulatory variation to be valid. We propose that interelement selection among retrotransposons may provide a molecular drive mechanism for the evolution of eukaryotic enhancers which can be subsequently distributed throughout the genome by retrotransposition. |
doi_str_mv | 10.1073/pnas.93.14.7097 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_38942</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>39543</jstor_id><sourcerecordid>39543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c542t-44084ce45a7c7fef673743009f38de95d0410770116fb54e08a7c07e3ca41f3e3</originalsourceid><addsrcrecordid>eNqFkctvEzEQxlcIVELhjIQEWBx4HDYdv9ZriQuqeEkVHKBny3G8iaONvbW9VfPf4yUhBQ5wsjzfb0bzzVdVjzHMMQh6Nnid5pLOMZsLkOJONcMgcd0wCXerGQARdcsIu189SGkDAJK3cFKdtI0kkuNZlb_oPEbd9zsUjBljdH6FrnV0OrvgkfPIhMFpZG-GaFP6WUtoOVqUA1qEvEa2t1vrM3ptXHqDtF-idUjlm6P2pRDtaux1DnF3O_Zhda_TfbKPDu9pdfnh_ffzT_XF14-fz99d1IYzkmvGoGXGMq6FEZ3tGkEFo8VDR9ullXwJrNxAAMZNt-DMQltAEJYazXBHLT2t3u7nDuNia5emrFmsqiG6rY47FbRTfyrerdUqXCvaSkZK-8tDewxXo01ZbV0ytu-1t2FMSrS4oUDpf0HMG8JbMoEv_gI3YYy-3EARwJQQCRN0todMDClF2x0XxqCm0NUUupJUYaam0EvH0999HvlDykV_ddCnxl_q7QDVjX2f7U0u5LN_kgV4sgc2qWR6JKjkbNr8-V7sdFB6FV1Sl98mY4A5AUIx_QGmkNPV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201322903</pqid></control><display><type>article</type><title>Naturally occurring variation in copia expression is due to both element (cis) and host (trans) regulatory variation</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Matyunina, L.V ; Jordan, I.K ; McDonald, J.F</creator><creatorcontrib>Matyunina, L.V ; Jordan, I.K ; McDonald, J.F</creatorcontrib><description>Significant differences in levels of copia [Drosophila long terminal repeat (LTR) retrotransposon] expression exist among six species representing the Drosophila melanogaster species complex (D. melanogaster, Drosophila mauritiana, Drosophila simulans, Drosophila sechellia, Drosophila yakuba, and Drosophila erecta) and a more distantly related species (Drosophila willistoni). These differences in expression are correlated with major size variation mapping to putative regulatory regions of the copia 5' LTR and adjacent untranslated leader region (ULR). Sequence analysis indicates that these size variants were derived from a series of regional duplication events. The ability of the copia LTR-ULR size variants to drive expression of a bacterial chloramphenicol acetyltransferase reporter gene was tested in each of the seven species. The results indicate that both element-encoded (cis) and host-genome-encoded (trans) genetic differences are responsible for the variability in copia expression within and between Drosophila species. This finding indicates that models purporting to explain the dynamics and distribution of retrotransposons in natural populations must consider the potential impact of both element-encoded and host-genome-encoded regulatory variation to be valid. We propose that interelement selection among retrotransposons may provide a molecular drive mechanism for the evolution of eukaryotic enhancers which can be subsequently distributed throughout the genome by retrotransposition.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.93.14.7097</identifier><identifier>PMID: 8692951</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>Animals ; Base Sequence ; Biological Evolution ; chloramphenicol acetyltransferase ; Chloramphenicol O-Acetyltransferase - biosynthesis ; DNA Primers ; Drosophila ; Drosophila - genetics ; Drosophila - metabolism ; Drosophila erecta ; Drosophila mauritiana ; Drosophila melanogaster ; Drosophila melanogaster - genetics ; Drosophila melanogaster - metabolism ; Drosophila sechellia ; Drosophila simulans ; Drosophila willistoni ; Drosophila yakuba ; duplication ; Evolution ; genbank/u60291 ; genbank/u60292 ; genbank/u60293 ; gene expression ; Genes, Insect ; genetic regulation ; Genetic Variation ; Genetics ; Genomes ; HSP70 Heat-Shock Proteins - biosynthesis ; Insect larvae ; Insects ; long terminal repeat ; messenger RNA ; Molecular Sequence Data ; nucleotide sequences ; Plasmids ; Polymerase chain reaction ; recombinant DNA ; Recombinant Fusion Proteins - biosynthesis ; Regulatory Sequences, Nucleic Acid ; repetitive sequences ; Repetitive Sequences, Nucleic Acid ; Retroelements ; Retrotransposons ; RNA ; species differences ; Species Specificity ; Transposons ; untranslated leader sequence</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1996-07, Vol.93 (14), p.7097-7102</ispartof><rights>Copyright 1996 National Academy of Sciences</rights><rights>Copyright National Academy of Sciences Jul 9, 1996</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c542t-44084ce45a7c7fef673743009f38de95d0410770116fb54e08a7c07e3ca41f3e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/93/14.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/39543$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/39543$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,800,882,27905,27906,53772,53774,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8692951$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Matyunina, L.V</creatorcontrib><creatorcontrib>Jordan, I.K</creatorcontrib><creatorcontrib>McDonald, J.F</creatorcontrib><title>Naturally occurring variation in copia expression is due to both element (cis) and host (trans) regulatory variation</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Significant differences in levels of copia [Drosophila long terminal repeat (LTR) retrotransposon] expression exist among six species representing the Drosophila melanogaster species complex (D. melanogaster, Drosophila mauritiana, Drosophila simulans, Drosophila sechellia, Drosophila yakuba, and Drosophila erecta) and a more distantly related species (Drosophila willistoni). These differences in expression are correlated with major size variation mapping to putative regulatory regions of the copia 5' LTR and adjacent untranslated leader region (ULR). Sequence analysis indicates that these size variants were derived from a series of regional duplication events. The ability of the copia LTR-ULR size variants to drive expression of a bacterial chloramphenicol acetyltransferase reporter gene was tested in each of the seven species. The results indicate that both element-encoded (cis) and host-genome-encoded (trans) genetic differences are responsible for the variability in copia expression within and between Drosophila species. This finding indicates that models purporting to explain the dynamics and distribution of retrotransposons in natural populations must consider the potential impact of both element-encoded and host-genome-encoded regulatory variation to be valid. We propose that interelement selection among retrotransposons may provide a molecular drive mechanism for the evolution of eukaryotic enhancers which can be subsequently distributed throughout the genome by retrotransposition.</description><subject>Animals</subject><subject>Base Sequence</subject><subject>Biological Evolution</subject><subject>chloramphenicol acetyltransferase</subject><subject>Chloramphenicol O-Acetyltransferase - biosynthesis</subject><subject>DNA Primers</subject><subject>Drosophila</subject><subject>Drosophila - genetics</subject><subject>Drosophila - metabolism</subject><subject>Drosophila erecta</subject><subject>Drosophila mauritiana</subject><subject>Drosophila melanogaster</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila melanogaster - metabolism</subject><subject>Drosophila sechellia</subject><subject>Drosophila simulans</subject><subject>Drosophila willistoni</subject><subject>Drosophila yakuba</subject><subject>duplication</subject><subject>Evolution</subject><subject>genbank/u60291</subject><subject>genbank/u60292</subject><subject>genbank/u60293</subject><subject>gene expression</subject><subject>Genes, Insect</subject><subject>genetic regulation</subject><subject>Genetic Variation</subject><subject>Genetics</subject><subject>Genomes</subject><subject>HSP70 Heat-Shock Proteins - biosynthesis</subject><subject>Insect larvae</subject><subject>Insects</subject><subject>long terminal repeat</subject><subject>messenger RNA</subject><subject>Molecular Sequence Data</subject><subject>nucleotide sequences</subject><subject>Plasmids</subject><subject>Polymerase chain reaction</subject><subject>recombinant DNA</subject><subject>Recombinant Fusion Proteins - biosynthesis</subject><subject>Regulatory Sequences, Nucleic Acid</subject><subject>repetitive sequences</subject><subject>Repetitive Sequences, Nucleic Acid</subject><subject>Retroelements</subject><subject>Retrotransposons</subject><subject>RNA</subject><subject>species differences</subject><subject>Species Specificity</subject><subject>Transposons</subject><subject>untranslated leader sequence</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctvEzEQxlcIVELhjIQEWBx4HDYdv9ZriQuqeEkVHKBny3G8iaONvbW9VfPf4yUhBQ5wsjzfb0bzzVdVjzHMMQh6Nnid5pLOMZsLkOJONcMgcd0wCXerGQARdcsIu189SGkDAJK3cFKdtI0kkuNZlb_oPEbd9zsUjBljdH6FrnV0OrvgkfPIhMFpZG-GaFP6WUtoOVqUA1qEvEa2t1vrM3ptXHqDtF-idUjlm6P2pRDtaux1DnF3O_Zhda_TfbKPDu9pdfnh_ffzT_XF14-fz99d1IYzkmvGoGXGMq6FEZ3tGkEFo8VDR9ullXwJrNxAAMZNt-DMQltAEJYazXBHLT2t3u7nDuNia5emrFmsqiG6rY47FbRTfyrerdUqXCvaSkZK-8tDewxXo01ZbV0ytu-1t2FMSrS4oUDpf0HMG8JbMoEv_gI3YYy-3EARwJQQCRN0todMDClF2x0XxqCm0NUUupJUYaam0EvH0999HvlDykV_ddCnxl_q7QDVjX2f7U0u5LN_kgV4sgc2qWR6JKjkbNr8-V7sdFB6FV1Sl98mY4A5AUIx_QGmkNPV</recordid><startdate>19960709</startdate><enddate>19960709</enddate><creator>Matyunina, L.V</creator><creator>Jordan, I.K</creator><creator>McDonald, J.F</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19960709</creationdate><title>Naturally occurring variation in copia expression is due to both element (cis) and host (trans) regulatory variation</title><author>Matyunina, L.V ; Jordan, I.K ; McDonald, J.F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c542t-44084ce45a7c7fef673743009f38de95d0410770116fb54e08a7c07e3ca41f3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Animals</topic><topic>Base Sequence</topic><topic>Biological Evolution</topic><topic>chloramphenicol acetyltransferase</topic><topic>Chloramphenicol O-Acetyltransferase - biosynthesis</topic><topic>DNA Primers</topic><topic>Drosophila</topic><topic>Drosophila - genetics</topic><topic>Drosophila - metabolism</topic><topic>Drosophila erecta</topic><topic>Drosophila mauritiana</topic><topic>Drosophila melanogaster</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila melanogaster - metabolism</topic><topic>Drosophila sechellia</topic><topic>Drosophila simulans</topic><topic>Drosophila willistoni</topic><topic>Drosophila yakuba</topic><topic>duplication</topic><topic>Evolution</topic><topic>genbank/u60291</topic><topic>genbank/u60292</topic><topic>genbank/u60293</topic><topic>gene expression</topic><topic>Genes, Insect</topic><topic>genetic regulation</topic><topic>Genetic Variation</topic><topic>Genetics</topic><topic>Genomes</topic><topic>HSP70 Heat-Shock Proteins - biosynthesis</topic><topic>Insect larvae</topic><topic>Insects</topic><topic>long terminal repeat</topic><topic>messenger RNA</topic><topic>Molecular Sequence Data</topic><topic>nucleotide sequences</topic><topic>Plasmids</topic><topic>Polymerase chain reaction</topic><topic>recombinant DNA</topic><topic>Recombinant Fusion Proteins - biosynthesis</topic><topic>Regulatory Sequences, Nucleic Acid</topic><topic>repetitive sequences</topic><topic>Repetitive Sequences, Nucleic Acid</topic><topic>Retroelements</topic><topic>Retrotransposons</topic><topic>RNA</topic><topic>species differences</topic><topic>Species Specificity</topic><topic>Transposons</topic><topic>untranslated leader sequence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matyunina, L.V</creatorcontrib><creatorcontrib>Jordan, I.K</creatorcontrib><creatorcontrib>McDonald, J.F</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matyunina, L.V</au><au>Jordan, I.K</au><au>McDonald, J.F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Naturally occurring variation in copia expression is due to both element (cis) and host (trans) regulatory variation</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1996-07-09</date><risdate>1996</risdate><volume>93</volume><issue>14</issue><spage>7097</spage><epage>7102</epage><pages>7097-7102</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Significant differences in levels of copia [Drosophila long terminal repeat (LTR) retrotransposon] expression exist among six species representing the Drosophila melanogaster species complex (D. melanogaster, Drosophila mauritiana, Drosophila simulans, Drosophila sechellia, Drosophila yakuba, and Drosophila erecta) and a more distantly related species (Drosophila willistoni). These differences in expression are correlated with major size variation mapping to putative regulatory regions of the copia 5' LTR and adjacent untranslated leader region (ULR). Sequence analysis indicates that these size variants were derived from a series of regional duplication events. The ability of the copia LTR-ULR size variants to drive expression of a bacterial chloramphenicol acetyltransferase reporter gene was tested in each of the seven species. The results indicate that both element-encoded (cis) and host-genome-encoded (trans) genetic differences are responsible for the variability in copia expression within and between Drosophila species. This finding indicates that models purporting to explain the dynamics and distribution of retrotransposons in natural populations must consider the potential impact of both element-encoded and host-genome-encoded regulatory variation to be valid. We propose that interelement selection among retrotransposons may provide a molecular drive mechanism for the evolution of eukaryotic enhancers which can be subsequently distributed throughout the genome by retrotransposition.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>8692951</pmid><doi>10.1073/pnas.93.14.7097</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 1996-07, Vol.93 (14), p.7097-7102 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_38942 |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Animals Base Sequence Biological Evolution chloramphenicol acetyltransferase Chloramphenicol O-Acetyltransferase - biosynthesis DNA Primers Drosophila Drosophila - genetics Drosophila - metabolism Drosophila erecta Drosophila mauritiana Drosophila melanogaster Drosophila melanogaster - genetics Drosophila melanogaster - metabolism Drosophila sechellia Drosophila simulans Drosophila willistoni Drosophila yakuba duplication Evolution genbank/u60291 genbank/u60292 genbank/u60293 gene expression Genes, Insect genetic regulation Genetic Variation Genetics Genomes HSP70 Heat-Shock Proteins - biosynthesis Insect larvae Insects long terminal repeat messenger RNA Molecular Sequence Data nucleotide sequences Plasmids Polymerase chain reaction recombinant DNA Recombinant Fusion Proteins - biosynthesis Regulatory Sequences, Nucleic Acid repetitive sequences Repetitive Sequences, Nucleic Acid Retroelements Retrotransposons RNA species differences Species Specificity Transposons untranslated leader sequence |
title | Naturally occurring variation in copia expression is due to both element (cis) and host (trans) regulatory variation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T08%3A35%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Naturally%20occurring%20variation%20in%20copia%20expression%20is%20due%20to%20both%20element%20(cis)%20and%20host%20(trans)%20regulatory%20variation&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Matyunina,%20L.V&rft.date=1996-07-09&rft.volume=93&rft.issue=14&rft.spage=7097&rft.epage=7102&rft.pages=7097-7102&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.93.14.7097&rft_dat=%3Cjstor_pubme%3E39543%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201322903&rft_id=info:pmid/8692951&rft_jstor_id=39543&rfr_iscdi=true |