Functional MRI of the amygdala and bed nucleus of the stria terminalis during conditions of uncertainty in generalized anxiety disorder
Abstract Generalized anxiety disorder (GAD) is a common psychiatric disorder characterized by constant worry or anxiety over every day life activities and events. The neurobiology of the disorder is thought to involve a wide cortical and subcortical network that includes but is not limited to the am...
Gespeichert in:
Veröffentlicht in: | Journal of psychiatric research 2012-08, Vol.46 (8), p.1045-1052 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract Generalized anxiety disorder (GAD) is a common psychiatric disorder characterized by constant worry or anxiety over every day life activities and events. The neurobiology of the disorder is thought to involve a wide cortical and subcortical network that includes but is not limited to the amygdala and the bed nucleus of the stria terminalis (BNST). These two regions have been hypothesized to play different roles in stress and anxiety; the amygdala is thought to regulate responses to brief emotional stimuli while the BNST is thought to be involved in more chronic regulation of sustained anxiety. In this study, we exposed medication-free GAD patients as well as non-anxious controls to a gambling game where one of the conditions involved non-contingent monetary loss. This condition of high uncertainty was intended to elicit a stressful response and sustained anxiety. Functional MRI scans were collected simultaneously to investigate BOLD activity in the amygdala and BNST during performance of this task. Compared to controls, we found that GAD patients demonstrated decreased activity in the amygdala and increased activity in the BNST. Skin conductance measures showed a consistent early versus late effect within block where GAD patients demonstrated higher arousal than controls late in the task blocks. Based on these results, we hypothesize that GAD patients disengage the amygdala and its response to acute stress earlier than non-anxious controls making way for the BNST to maintain a more sustained response. Future studies are needed to investigate the temporal dynamics of activation and deactivation in these regions. |
---|---|
ISSN: | 0022-3956 1879-1379 |
DOI: | 10.1016/j.jpsychires.2012.04.013 |