Inhibitory Mechanism of an Allosteric Antibody Targeting the Glucagon Receptor

Elevated glucagon levels and increased hepatic glucagon receptor (GCGR) signaling contribute to hyperglycemia in type 2 diabetes. We have identified a monoclonal antibody that inhibits GCGR, a class B G-protein coupled receptor (GPCR), through a unique allosteric mechanism. Receptor inhibition is me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2013-12, Vol.288 (50), p.36168-36178
Hauptverfasser: Mukund, Susmith, Shang, Yonglei, Clarke, Holly J., Madjidi, Azadeh, Corn, Jacob E., Kates, Lance, Kolumam, Ganesh, Chiang, Vicky, Luis, Elizabeth, Murray, Jeremy, Zhang, Yingnan, Hötzel, Isidro, Koth, Christopher M., Allan, Bernard B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Elevated glucagon levels and increased hepatic glucagon receptor (GCGR) signaling contribute to hyperglycemia in type 2 diabetes. We have identified a monoclonal antibody that inhibits GCGR, a class B G-protein coupled receptor (GPCR), through a unique allosteric mechanism. Receptor inhibition is mediated by the binding of this antibody to two distinct sites that lie outside of the glucagon binding cleft. One site consists of a patch of residues that are surface-exposed on the face of the extracellular domain (ECD) opposite the ligand-binding cleft, whereas the second binding site consists of residues in the αA helix of the ECD. A docking model suggests that the antibody does not occlude the ligand-binding cleft. We solved the crystal structure of GCGR ECD containing a naturally occurring G40S mutation and found a shift in the register of the αA helix that prevents antibody binding. We also found that alterations in the αA helix impact the normal function of GCGR. We present a model for the allosteric inhibition of GCGR by a monoclonal antibody that may form the basis for the development of allosteric modulators for the treatment of diabetes and other class B GPCR-related diseases. Background: Allosteric regulators of GPCRs provide unique pharmacological properties. Results: The mechanism of allosteric inhibition of the glucagon receptor by an antibody, which is uniquely sensitive to a naturally occurring G40S mutation, is detailed. Conclusion: Allosteric sites on the glucagon receptor extracellular domain regulate receptor activity. Significance: Mechanisms of allosteric regulation of GPCRs aid discovery of drugs with improved selectivity.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M113.496984