Genetic variants in selenoprotein P plasma 1 gene (SEPP1) are associated with fasting insulin and first phase insulin response in Hispanics
Insulin resistance is not fully explained on a molecular level, though several genes and proteins have been tied to this defect. Knockdowns of the SEPP1 gene, which encodes the selenoprotein P (SeP) protein, have been shown to increase insulin sensitivity in mice. SeP is a liver-derived plasma prote...
Gespeichert in:
Veröffentlicht in: | Gene 2014-01, Vol.534 (1), p.33-39 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Insulin resistance is not fully explained on a molecular level, though several genes and proteins have been tied to this defect. Knockdowns of the SEPP1 gene, which encodes the selenoprotein P (SeP) protein, have been shown to increase insulin sensitivity in mice. SeP is a liver-derived plasma protein and a major supplier of selenium, which is a proposed insulin mimetic and antidiabetic agent.
SEPP1 single nucleotide polymorphisms (SNPs) were selected for analysis with glucometabolic measures.
The study included1424 Hispanics from families in the Insulin Resistance Atherosclerosis Family Study (IRASFS). Additionally, the multi-ethnic Insulin Resistance Atherosclerosis Study was used. A frequently sampled intravenous glucose tolerance test was used to obtain precise measures of acute insulin response (AIR) and the insulin sensitivity index (SI).
21 SEPP1 SNPs (tagging SNPs (n=12) from HapMap, 4 coding variants and 6 SNPs in the promoter region) were genotyped and analyzed for association.
Two highly correlated (r2=1) SNPs showed association with AIR (rs28919926; Cys368Arg; p=0.0028 and rs146125471; Ile293Met; p=0.0026) while rs16872779 (intronic) was associated with fasting insulin levels (p=0.0097). In the smaller IRAS Hispanic cohort, few of the associations seen in the IRASFS were replicated, but meta-analysis of IRASFS and all 3 IRAS cohorts (N=2446) supported association of rs28919926 and rs146125471 with AIR (p=0.013 and 0.0047, respectively) as well as rs7579 with SI (p=0.047).
Overall, these results in a human sample are consistent with the literature suggesting a role for SEPP1 in insulin resistance.
•Literature suggests link between selenium and insulin resistance mediated by SEPP1.•Evaluation of 22 polymorphisms in SEPP1 region with measures of glucose homeostasis•Several SEPP1 SNPs show evidence of association with various metabolic measures.•Many of these traits are correlated, so a specific target for SEPP1 remains unclear.•Some associations were found to be of consistent direction across ethnic groups. |
---|---|
ISSN: | 0378-1119 1879-0038 |
DOI: | 10.1016/j.gene.2013.10.035 |