Ultrametric skeletons
We prove that for every ε ∈(0,1) there exists C ε∈(0,∞) with the following property. If (X , d) is a compact metric space and μ is a Borel probability measure on X then there exists a compact subset S ⊆ X that embeds into an ultrametric space with distortion O (1/ ε), and a probability measure ν sup...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2013-11, Vol.110 (48), p.19256-19262 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that for every ε ∈(0,1) there exists C ε∈(0,∞) with the following property. If (X , d) is a compact metric space and μ is a Borel probability measure on X then there exists a compact subset S ⊆ X that embeds into an ultrametric space with distortion O (1/ ε), and a probability measure ν supported on S satisfying ν (B d(x , r))⩽(μ (B d(x , C εr)) ¹⁻ᵋ for all x ∈ X and r ∈(0,∞). The dependence of the distortion on ε is sharp. We discuss an extension of this statement to multiple measures, as well as how it implies Talagrand’s majorizing measure theorem. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.1202500109 |