Nanoscale Fabrication of the Ferroelectric Polymer Poly(vinylidene Fluoride with Trifluoroethylene) P(VDF-TrFE) 75:25 Thin Films by Atomic Force Microscope Nanolithography
Summary Thin films of an organic ferroelectric system, poly(vinylidene fluoride with trifluoroethylene) P(VDF‐TrFE, Kureha Corporation, Tokyo, Japan) 75:25 layers, have been deposited on highly ordered pyrolytic graphite and silicon dioxide by the horizontal Schaefer method of Langmuir–Blodgett tech...
Gespeichert in:
Veröffentlicht in: | Scanning 2012-11, Vol.34 (6), p.404-409 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Summary
Thin films of an organic ferroelectric system, poly(vinylidene fluoride with trifluoroethylene) P(VDF‐TrFE, Kureha Corporation, Tokyo, Japan) 75:25 layers, have been deposited on highly ordered pyrolytic graphite and silicon dioxide by the horizontal Schaefer method of Langmuir–Blodgett techniques. It is possible to “shave” or mechanically displace small regions of the polymer film by using atomic force microscope nanolithography techniques such as nanoshaving, leaving swaths of the surface cut to a depth of 4 nm and 12 nm exposing the substrate. The results of fabricating stripes by nanoshaving two holes close to each other show a limit to the material “stripe” widths of an average of 153.29 nm and 177.67 nm that can be produced. Due to the lack of adhesion between the substrates and the polymer P(VDF‐TrFE) film, smaller “stripes” of P(VDF‐TrFE) cannot be produced, and it can be shown by the sequencing of nanoshaved regions that “stripes” of thin films can be removed. SCANNING 34: 404‐409, 2012. © 2012 Wiley Periodicals, Inc. |
---|---|
ISSN: | 0161-0457 1932-8745 |
DOI: | 10.1002/sca.21024 |