Polycation-functionalized nanoporous silicon particles for gene silencing on breast cancer cells

Abstract Nanoporous silicon particles (pSi), with a pore size in the range of 20–60 nm, were modified with polyethyleneimine (PEI) to yield pSi–PEI particles, which were subsequently complexed with siRNA. Thus, pSi–PEI/siRNA particles were fabricated, with the PEI/siRNA nanocomplexes mainly anchored...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2014-01, Vol.35 (1), p.423-431
Hauptverfasser: Zhang, Mingzhen, Xu, Rong, Xia, Xiaojun, Yang, Yong, Gu, Jianhua, Qin, Guoting, Liu, Xuewu, Ferrari, Mauro, Shen, Haifa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Nanoporous silicon particles (pSi), with a pore size in the range of 20–60 nm, were modified with polyethyleneimine (PEI) to yield pSi–PEI particles, which were subsequently complexed with siRNA. Thus, pSi–PEI/siRNA particles were fabricated, with the PEI/siRNA nanocomplexes mainly anchored inside the nanopore of the pSi particles. These hybrid particles were used as carriers to deliver siRNA to human breast cancer cells. Due to the gradual degradation of the pSi matrix under physiological conditions, the PEI/siRNA nanocomplexes were released from the pore interior in a sustained manner. Physicochemical characterization revealed that the released PEI/siRNA nanocomplexes exhibited well-defined spherical shape and narrow particle size distribution between 15 and 30 nm. Gene knockdown against the ataxia telangiectasia mutated (ATM) cancer gene showed dramatic gene silencing efficacy. Moreover, comprehensive biocompatibility studies were performed for the pSi–PEI/siRNA particles both in vitro and in vivo and demonstrated that the pSi–PEI particles exhibited significantly enhanced biocompatibility. As a consequence, PEI-modified porous silicon particles may have substantial potential as safe and effective siRNA delivery systems.
ISSN:0142-9612
1878-5905
DOI:10.1016/j.biomaterials.2013.09.033