Integrin αvβ3 and Fibronectin Upregulate Slug in Cancer Cells to Promote Clot Invasion and Metastasis

The blood clotting cascade is selectively involved in lung metastasis, but the reason for this selectivity is unclear. Here, we show that tumor cells that metastasize predominantly to the lung, such as renal cell carcinoma (RCC) and soft tissue sarcoma (STS), have an inherent capacity to generate ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer research (Chicago, Ill.) Ill.), 2013-10, Vol.73 (20), p.6175-6184
Hauptverfasser: KNOWLES, Lynn M, GURSKI, Lisa A, ENGEL, Charlotte, GNARRA, James R, MARANCHIE, Jodi K, PILCH, Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The blood clotting cascade is selectively involved in lung metastasis, but the reason for this selectivity is unclear. Here, we show that tumor cells that metastasize predominantly to the lung, such as renal cell carcinoma (RCC) and soft tissue sarcoma (STS), have an inherent capacity to generate extensive invadopodia when embedded in a blood clot. Compared with other metastatic cancer cells tested, RCC and STS cells exhibited increased levels of expression of fibronectin and an activated form of the integrin αvβ3, which coordinately supported the generation of an elaborate fibronectin matrix and actin stress fibers in fibrin-embedded tumor cells. Together, fibronectin and αvβ3 induced upregulation of the transcription factor Slug, which mediates epithelial-mesenchymal transition as well as fibrin invasion and lung metastasis. This mechanism is clinically significant, because primary cancer cells from patients with metastatic RCC strongly invaded fibrin and this correlated with fibronectin matrix formation and Slug expression. In contrast, tumor cells from patients with localized RCC were largely noninvasive. Together, our findings establish that activated integrin αvβ3 and fibronectin promote lung metastasis by upregulating Slug, defining a mechanism through which cancer cells can colonize blood clots in the lung vasculature.
ISSN:0008-5472
1538-7445
DOI:10.1158/0008-5472.can-13-0602