Molecular Mechanisms Underlying the Rapid Arrhythmogenic Action of Bisphenol A in Female Rat Hearts

Previously we showed that bisphenol A (BPA), an environmental estrogenic endocrine disruptor, rapidly altered Ca2+ handling and promoted arrhythmias in female rat hearts. The underlying molecular mechanism was not known. Here we examined the cardiac-specific signaling mechanism mediating the rapid i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Endocrinology (Philadelphia) 2013-12, Vol.154 (12), p.4607-4617
Hauptverfasser: Gao, Xiaoqian, Liang, Qian, Chen, Yamei, Wang, Hong-Sheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Previously we showed that bisphenol A (BPA), an environmental estrogenic endocrine disruptor, rapidly altered Ca2+ handling and promoted arrhythmias in female rat hearts. The underlying molecular mechanism was not known. Here we examined the cardiac-specific signaling mechanism mediating the rapid impact of low-dose BPA in female rat ventricular myocytes. We showed that protein kinase A (PKA) and Ca2+/CaM-dependent protein kinase II (CAMKII) signaling pathways are the two major pathways activated by BPA. Exposure to 1 nM BPA rapidly increased production of cAMP and rapidly but transiently increased the phosphorylation of the ryanodine receptors by PKA but not by CAMKII. BPA also rapidly increased the phosphorylation of phospholamban (PLN), a key regulator protein of sarcoplasmic reticulum Ca2+ reuptake, by CAMKII but not PKA. The increase in CAMKII phosphorylation of PLN was mediated by phospholipase C and inositol trisphosphate receptor-mediated Ca2+ release, likely from the endoplasmic reticulum Ca2+ storage. These two pathways are likely localized, impacting only their respective target proteins. The rapid impacts of BPA on ryanodine receptors and PLN phosphorylation were mediated by estrogen receptor-β but not estrogen receptor-α. BPA's rapid signaling in cardiac myocytes did not involve activation of ERK1/2. Functional analysis showed that PKA but not CAMKII activation contributed to BPA-induced sarcoplasmic reticulum Ca2+ leak, and both PKA and CAMKII were necessary contributors to the stimulatory effect of BPA on arrhythmogenesis. These results provide mechanistic insight into BPA's rapid proarrhythmic actions in female cardiac myocytes and contribute to the assessment of the consequence and potential cardiac toxicity of BPA exposure.
ISSN:0013-7227
1945-7170
DOI:10.1210/en.2013-1737