Proposed design for the PGAA facility at the TRIGA IPR-R1 research reactor
Background This work presents an initial proposed design of a Prompt Gamma Activation Analysis (PGAA) facility to be installed at the TRIGA IPR-R1, a 60 years old research reactor of the Centre of Development of Nuclear Technology (CDTN) in Brazil. The basic characteristics of the facility and the r...
Gespeichert in:
Veröffentlicht in: | SpringerPlus 2013-11, Vol.2 (1), p.597-597, Article 597 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background
This work presents an initial proposed design of a Prompt Gamma Activation Analysis (PGAA) facility to be installed at the TRIGA IPR-R1, a 60 years old research reactor of the Centre of Development of Nuclear Technology (CDTN) in Brazil. The basic characteristics of the facility and the results of the neutron flux are presented and discussed.
Findings
The proposed design is based on a quasi vertical tube as a neutron guide from the reactor core, inside the reactor pool, 6 m below the room’s level where shall be located the rack containing the set sample/detector/shielding. The evaluation of the thermal and epithermal neutron flux in the sample position was done considering the experimental data obtained from a vertical neutron guide, already existent in the reactor, and the simulated model for the facility.
Methods
The experimental determination of the neutron flux was obtained through the standard procedure of using Au monitors in different positions of the vertical tube. In order to validate both, this experiment and calculations of the simulated model, the flux was also determined in different positions in the core used for sample irradiation. The model of the system was developed using the Monte Carlo code MCNP5.
Conclusion
The preliminary results suggest the possibility of obtaining a beam with minimum thermal flux of magnitude 10
6
cm
-2
s
-1
, which confirm the technical feasibility of the installation of PGAA at the TRIGA IPR-R1 reactor. This beam would open new possibilities for enhancing the applications using the reactor. |
---|---|
ISSN: | 2193-1801 2193-1801 |
DOI: | 10.1186/2193-1801-2-597 |