CR1-mediated ATP Release by Human Red Blood Cells Promotes CR1 Clustering and Modulates the Immune Transfer Process

Humans and other higher primates are unique among mammals in using complement receptor 1 (CR1, CD35) on red blood cells (RBC) to ligate complement-tagged inflammatory particles (immune complexes, apoptotic/necrotic debris, and microbes) in the circulation for quiet transport to the sinusoids of sple...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2013-10, Vol.288 (43), p.31139-31153
Hauptverfasser: Melhorn, Mark I., Brodsky, Abigail S., Estanislau, Jessica, Khoory, Joseph A., Illigens, Ben, Hamachi, Itaru, Kurishita, Yasutaka, Fraser, Andrew D., Nicholson-Weller, Anne, Dolmatova, Elena, Duffy, Heather S., Ghiran, Ionita C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Humans and other higher primates are unique among mammals in using complement receptor 1 (CR1, CD35) on red blood cells (RBC) to ligate complement-tagged inflammatory particles (immune complexes, apoptotic/necrotic debris, and microbes) in the circulation for quiet transport to the sinusoids of spleen and liver where resident macrophages remove the particles, but allow the RBC to return unharmed to the circulation. This process is called immune-adherence clearance. In this study we found using luminometric- and fluorescence-based methods that ligation of CR1 on human RBC promotes ATP release. Our data show that CR1-mediated ATP release does not depend on Ca2+ or enzymes previously shown to mediate an increase in membrane deformability promoted by CR1 ligation. Furthermore, ATP release following CR1 ligation increases the mobility of the lipid fraction of RBC membranes, which in turn facilitates CR1 clustering, and thereby enhances the binding avidity of complement-opsonized particles to the RBC CR1. Finally, we have found that RBC-derived ATP has a stimulatory effect on phagocytosis of immune-adherent immune complexes. Background: CR1 on human red blood cells (RBC) capture immune complexes and deliver them to phagocytes. Results: RBC CR1-mediated ATP release increases RBC lipid mobility, CR1 avidity, and neutrophil phagocytosis. Conclusion: ATP release following CR1 ligation alters both RBC and neutrophil function. Significance: A new role for ATP from human RBC in modulating immune complex transfer.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M113.486035