A major QTL controlling deep rooting on rice chromosome 4

Drought is the most serious abiotic stress that hinders rice production under rainfed conditions. Breeding for deep rooting is a promising strategy to improve the root system architecture in shallow-rooting rice cultivars to avoid drought stress. We analysed the quantitative trait loci (QTLs) for th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2013-10, Vol.3 (1), p.3040-3040, Article 3040
Hauptverfasser: Uga, Yusaku, Yamamoto, Eiji, Kanno, Noriko, Kawai, Sawako, Mizubayashi, Tatsumi, Fukuoka, Shuichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Drought is the most serious abiotic stress that hinders rice production under rainfed conditions. Breeding for deep rooting is a promising strategy to improve the root system architecture in shallow-rooting rice cultivars to avoid drought stress. We analysed the quantitative trait loci (QTLs) for the ratio of deep rooting (RDR) in three F 2 mapping populations derived from crosses between each of three shallow-rooting varieties (‘ARC5955’, ‘Pinulupot1’, and ‘Tupa729’) and a deep-rooting variety, ‘Kinandang Patong’. In total, we detected five RDR QTLs on chromosomes 2, 4, and 6. In all three populations, QTLs on chromosome 4 were found to be located at similar positions; they explained from 32.0% to 56.6% of the total RDR phenotypic variance. This suggests that one or more key genetic factors controlling the root growth angle in rice is located in this region of chromosome 4.
ISSN:2045-2322
2045-2322
DOI:10.1038/srep03040