Maximum-likelihood estimation in Optical Coherence Tomography in the context of the tear film dynamics

Understanding tear film dynamics is a prerequisite for advancing the management of Dry Eye Disease (DED). In this paper, we discuss the use of optical coherence tomography (OCT) and statistical decision theory to analyze the tear film dynamics of a digital phantom. We implement a maximum-likelihood...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedical optics express 2013, Vol.4 (10), p.1806-1816
Hauptverfasser: Huang, Jinxin, Clarkson, Eric, Kupinski, Matthew, Lee, Kye-Sung, Maki, Kara L, Ross, David S, Aquavella, James V, Rolland, Jannick P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Understanding tear film dynamics is a prerequisite for advancing the management of Dry Eye Disease (DED). In this paper, we discuss the use of optical coherence tomography (OCT) and statistical decision theory to analyze the tear film dynamics of a digital phantom. We implement a maximum-likelihood (ML) estimator to interpret OCT data based on mathematical models of Fourier-Domain OCT and the tear film. With the methodology of task-based assessment, we quantify the tradeoffs among key imaging system parameters. We find, on the assumption that the broadband light source is characterized by circular Gaussian statistics, ML estimates of 40 nm +/- 4 nm for an axial resolution of 1 μm and an integration time of 5 μs. Finally, the estimator is validated with a digital phantom of tear film dynamics, which reveals estimates of nanometer precision.
ISSN:2156-7085
2156-7085
DOI:10.1364/BOE.4.001806