Reliable Identification of Genomic Variants from RNA-Seq Data

Identifying genomic variation is a crucial step for unraveling the relationship between genotype and phenotype and can yield important insights into human diseases. Prevailing methods rely on cost-intensive whole-genome sequencing (WGS) or whole-exome sequencing (WES) approaches while the identifica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of human genetics 2013-10, Vol.93 (4), p.641-651
Hauptverfasser: Piskol, Robert, Ramaswami, Gokul, Li, Jin Billy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Identifying genomic variation is a crucial step for unraveling the relationship between genotype and phenotype and can yield important insights into human diseases. Prevailing methods rely on cost-intensive whole-genome sequencing (WGS) or whole-exome sequencing (WES) approaches while the identification of genomic variants from often existing RNA sequencing (RNA-seq) data remains a challenge because of the intrinsic complexity in the transcriptome. Here, we present a highly accurate approach termed SNPiR to identify SNPs in RNA-seq data. We applied SNPiR to RNA-seq data of samples for which WGS and WES data are also available and achieved high specificity and sensitivity. Of the SNPs called from the RNA-seq data, >98% were also identified by WGS or WES. Over 70% of all expressed coding variants were identified from RNA-seq, and comparable numbers of exonic variants were identified in RNA-seq and WES. Despite our method’s limitation in detecting variants in expressed regions only, our results demonstrate that SNPiR outperforms current state-of-the-art approaches for variant detection from RNA-seq data and offers a cost-effective and reliable alternative for SNP discovery.
ISSN:0002-9297
1537-6605
DOI:10.1016/j.ajhg.2013.08.008