A Cargo-centered Perspective on the PEX5 Receptor-mediated Peroxisomal Protein Import Pathway

How the soluble receptor PEX5 delivers its cargoes to the peroxisome remains largely unknown. Results: Cargo translocation occurs after docking of the receptor at the peroxisome and before any ATP-dependent step. Conclusion: Translocation is concomitant with PEX5 insertion into the docking/transloca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2013-10, Vol.288 (40), p.29151-29159
Hauptverfasser: Francisco, Tânia, Rodrigues, Tony A., Freitas, Marta O., Grou, Cláudia P., Carvalho, Andreia F., Sá-Miranda, Clara, Pinto, Manuel P., Azevedo, Jorge E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:How the soluble receptor PEX5 delivers its cargoes to the peroxisome remains largely unknown. Results: Cargo translocation occurs after docking of the receptor at the peroxisome and before any ATP-dependent step. Conclusion: Translocation is concomitant with PEX5 insertion into the docking/translocation machinery. Significance: These results support a model in which cargoes are pushed across the peroxisomal membrane by PEX5. Peroxisomal matrix proteins are synthesized on cytosolic ribosomes and post-translationally targeted to the organelle by PEX5, the peroxisomal shuttling receptor. The pathway followed by PEX5 during this process is known with reasonable detail. After recognizing cargo proteins in the cytosol, the receptor interacts with the peroxisomal docking/translocation machinery, where it gets inserted; PEX5 is then monoubiquitinated, extracted back to the cytosol and, finally, deubiquitinated. However, despite this information, the exact step of this pathway where cargo proteins are translocated across the organelle membrane is still ill-defined. In this work, we used an in vitro import system to characterize the translocation mechanism of a matrix protein possessing a type 1 targeting signal. Our results suggest that translocation of proteins across the organelle membrane occurs downstream of a reversible docking step and upstream of the first cytosolic ATP-dependent step (i.e. before ubiquitination of PEX5), concomitantly with the insertion of the receptor into the docking/translocation machinery.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M113.487140