Hydroquinone Increases 5-Hydroxymethylcytosine Formation through Ten Eleven Translocation 1 (TET1) 5-Methylcytosine Dioxygenase
Hydroquinone is a benzene metabolite shown to lead to decreased DNA methylation. Results: Hydroquinone exposure increases Ten Eleven Translocation 1 methylcytosine dioxygenase activity and 5-hydroxymethylcytosine levels and decreases DNA methylation. Conclusion: Hydroquinone leads to DNA demethylati...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2013-10, Vol.288 (40), p.28792-28800 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hydroquinone is a benzene metabolite shown to lead to decreased DNA methylation.
Results: Hydroquinone exposure increases Ten Eleven Translocation 1 methylcytosine dioxygenase activity and 5-hydroxymethylcytosine levels and decreases DNA methylation.
Conclusion: Hydroquinone leads to DNA demethylation through a Ten Eleven Translocation 1-dependent mechanism.
Significance: This mechanism may explain observations of decreased DNA methylation and cytotoxicity following exposure to benzene and hydroquinone.
DNA methylation regulates gene expression throughout development and in a wide range of pathologies such as cancer and neurological disorders. Pathways controlling the dynamic levels and targets of methylation are known to be disrupted by chemicals and are therefore of great interest in both prevention and clinical contexts. Benzene and its metabolite hydroquinone have been shown to lead to decreased levels of DNA methylation, although the mechanism is not known. This study employs a cell culture model to investigate the mechanism of hydroquinone-mediated changes in DNA methylation. Exposures that do not affect HEK293 cell viability led to genomic and methylated reporter DNA demethylation. Hydroquinone caused reactivation of a methylated reporter plasmid that was prevented by the addition of N-acetylcysteine. Hydroquinone also caused an increase in Ten Eleven Translocation 1 activity and global levels of 5-hydroxymethylcytosine. 5-Hydroxymethylcytosine was found enriched at LINE-1 prior to a decrease in both 5-hydroxymethylcytosine and 5-methylcytosine. Ten Eleven Translocation-1 knockdown decreased 5-hydroxymethylcytosine formation following hydroquinone exposure as well as the induction of glutamate-cysteine ligase catalytic subunit and 14-3-3σ. Finally, Ten Eleven Translocation 1 knockdown decreased the percentage of cells accumulating in G2+M following hydroquinone exposure, indicating that it may have a role in cell cycle changes in response to toxicants. This work demonstrates that hydroquinone exposure leads to active and functional DNA demethylation in HEK293 cells in a mechanism involving reactive oxygen species and Ten Eleven Translocation 1 5-methylcytosine dioxygenase. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M113.491365 |