Rett syndrome mutations abolish the interaction of MeCP2 with the NCoR/SMRT co-repressor
In this study, the authors show that MeCP2 interacts with the NCoR/SMRT co-repressor complex and that a discrete cluster of Rett syndrome–causing mutations in the C-terminal domain of MeCP2 disrupts this interaction, impairing transcriptional repression. Knock-in mice expressing one of these MeCP2 m...
Gespeichert in:
Veröffentlicht in: | Nature neuroscience 2013-07, Vol.16 (7), p.898-902 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, the authors show that MeCP2 interacts with the NCoR/SMRT co-repressor complex and that a discrete cluster of Rett syndrome–causing mutations in the C-terminal domain of MeCP2 disrupts this interaction, impairing transcriptional repression. Knock-in mice expressing one of these MeCP2 missense mutations exhibit severe motor phenotypes.
Rett syndrome (RTT) is a severe neurological disorder that is caused by mutations in the
MECP2
gene. Many missense mutations causing RTT are clustered in the DNA-binding domain of MeCP2, suggesting that association with chromatin is critical for its function. We identified a second mutational cluster in a previously uncharacterized region of MeCP2. We found that RTT mutations in this region abolished the interaction between MeCP2 and the NCoR/SMRT co-repressor complexes. Mice bearing a common missense RTT mutation in this domain exhibited severe RTT-like phenotypes. Our data are compatible with the hypothesis that brain dysfunction in RTT is caused by a loss of the MeCP2 'bridge' between the NCoR/SMRT co-repressors and chromatin. |
---|---|
ISSN: | 1097-6256 1546-1726 |
DOI: | 10.1038/nn.3434 |