Long-term dynamics of CA1 hippocampal place codes
The authors use Ca 2+ imaging in freely behaving mice to look at the long-term dynamics of CA1 hippocampal place codes. They find that, in a familiar environment, there is substantial change in the population of place-coding cells over time, but the ensembles of these cells are sufficiently stable t...
Gespeichert in:
Veröffentlicht in: | Nature neuroscience 2013-03, Vol.16 (3), p.264-266 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The authors use Ca
2+
imaging in freely behaving mice to look at the long-term dynamics of CA1 hippocampal place codes. They find that, in a familiar environment, there is substantial change in the population of place-coding cells over time, but the ensembles of these cells are sufficiently stable to preserve an accurate spatial representation across weeks.
Using Ca
2+
imaging in freely behaving mice that repeatedly explored a familiar environment, we tracked thousands of CA1 pyramidal cells' place fields over weeks. Place coding was dynamic, as each day the ensemble representation of this environment involved a unique subset of cells. However, cells in the ∼15–25% overlap between any two of these subsets retained the same place fields, which sufficed to preserve an accurate spatial representation across weeks. |
---|---|
ISSN: | 1097-6256 1546-1726 |
DOI: | 10.1038/nn.3329 |