Endocrine Protection of Ischemic Myocardium by FGF21 from the Liver and Adipose Tissue

Myocardial ischemia, while causing cardiomyocyte injury, can activate innate protective processes, enhancing myocardial tolerance to ischemia. Such processes are present in not only the heart, but also remote organs. In this investigation, we demonstrated a cardioprotective process involving FGF21 f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2013-09, Vol.3 (1), p.2767-2767, Article 2767
Hauptverfasser: Liu, Shu Q., Roberts, Derek, Kharitonenkov, Alexei, Zhang, Brian, Hanson, Samuel M., Li, Yan Chun, Zhang, Li-Qun, Wu, Yu H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Myocardial ischemia, while causing cardiomyocyte injury, can activate innate protective processes, enhancing myocardial tolerance to ischemia. Such processes are present in not only the heart, but also remote organs. In this investigation, we demonstrated a cardioprotective process involving FGF21 from the liver and adipose tissue. In response to myocardial ischemia/reperfusion injury in the mouse, FGF21 was upregulated and released from the hepatic cells and adipocytes into the circulation and interacted with FGFR1 in cardiomyocytes under the mediation of the cell membrane protein β-Klotho, inducing FGFR1 phosphorylation. This action caused phosphorylation of the signaling molecules PI3K p85, Akt1 and BAD, thereby reducing caspase 3 activity, cell death and myocardial infarction in association with improvement of myocardial function. These observations suggest that FGF21 is upregulated and released from the liver and adipose tissue in myocardial injury, contributing to myocardial protection by the mediation of the FGFR1/β-Klotho–PI3K–Akt1–BAD signaling network.
ISSN:2045-2322
2045-2322
DOI:10.1038/srep02767