Topical administration of interleukin-1 receptor antagonist as a therapy for aqueous-deficient dry eye in autoimmune disease

Dry eye is commonly associated with autoimmune diseases such as Sjögren's syndrome (SS), in which exocrinopathy of the lacrimal gland leads to aqueous tear deficiency and keratoconjunctivitis sicca (KCS). KCS is among the most common and debilitating clinical manifestations of SS that is often...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular vision 2013-09, Vol.19, p.1957-1965
Hauptverfasser: Vijmasi, Trinka, Chen, Feeling Y T, Chen, Ying Ting, Gallup, Marianne, McNamara, Nancy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dry eye is commonly associated with autoimmune diseases such as Sjögren's syndrome (SS), in which exocrinopathy of the lacrimal gland leads to aqueous tear deficiency and keratoconjunctivitis sicca (KCS). KCS is among the most common and debilitating clinical manifestations of SS that is often recalcitrant to therapy. We established mice deficient in the autoimmune regulator (Aire) gene as a model for autoimmune-mediated aqueous-deficient dry eye. In Aire-deficient mice, CD4+ T cells represent the main effector cells and local signaling via the interleukin-1 (IL-1/IL-1R1) pathway provides an essential link between autoreactive CD4+ T cells and ocular surface disease. In the current study, we evaluated the efficacy of topical administration of IL-1R1 antagonist (IL-1RA) anakinra in alleviating ocular surface damage resulting from aqueous-deficient dry eye in the setting of autoimmune disease. We compared the effect of commercially available IL-1R1 antagonist, anakinra (50 μg/mL concentration) to that of carboxymethylcellulose (CMC) vehicle control as a treatment for dry eye. Age-matched, Aire-deficient mice were treated three times daily with anakinra or CMC vehicle for 14 days using side-by-side (n = 4 mice/group) and paired-eye (n = 5) comparisons. We assessed (1) ocular surface damage with lissamine green staining; (2) tear secretion with wetting of phenol-red threads; (3) goblet cell (GC) mucin glycosylation with lectin histochemistry; (4) immune cell infiltration using anti-F4/80, CD11c, and CD4 T cell antibodies; and (5) gene expression of cornified envelope protein, Small Proline-Rich Protein-1B (SPRR1B) with real-time quantitative polymerase chain reaction. Aire-deficient mice treated with anakinra experienced significant improvements in ocular surface integrity and tear secretion. After 7 days of treatment, lissamine green staining decreased in eyes treated with anakinra compared to an equivalent increase in staining following treatment with CMC vehicle alone. By day 14, lissamine green staining in anakinra-treated eyes remained stable while eyes treated with CMC vehicle continued to worsen. Accordingly, there was a progressive decline in tear secretion in eyes treated with the CMC vehicle compared to a progressive increase in the anakinra-treated eyes over the 2-week treatment period. Aberrant acidification of GC mucins and pathological keratinization of the ocular surface were significantly reduced in anakinra-treated eyes. Significantly fewer Ma
ISSN:1090-0535