miR-124 Inhibits STAT3 Signaling to Enhance T Cell-Mediated Immune Clearance of Glioma

miRNAs (miR) have been shown to modulate critical gene transcripts involved in tumorigenesis, but their role in tumor-mediated immunosuppression is largely unknown. On the basis of miRNA gene expression in gliomas using tissue microarrays, in situ hybridization, and molecular modeling, miR-124 was i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer research (Chicago, Ill.) Ill.), 2013-07, Vol.73 (13), p.3913-3926
Hauptverfasser: JUN WEI, FEI WANG, WEI QIAO, LEVINE, Nicholas B, LANG, Frederick F, RAO, Ganesh, FULLER, Gregory N, CALIN, George A, HEIMBERGER, Amy B, KONG, Ling-Yuan, SHUO XU, DOUCETTE, Tiffany, FERGUSON, Sherise D, YUHUI YANG, MCENERY, Kayla, JETHWA, Krishan, GJYSHI, Olsi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:miRNAs (miR) have been shown to modulate critical gene transcripts involved in tumorigenesis, but their role in tumor-mediated immunosuppression is largely unknown. On the basis of miRNA gene expression in gliomas using tissue microarrays, in situ hybridization, and molecular modeling, miR-124 was identified as a lead candidate for modulating STAT3 signaling, a key pathway mediating immunosuppression in the tumor microenvironment. miR-124 is absent in all grades and pathologic types of gliomas. Upon upregulating miR-124 in glioma cancer stem cells (gCSC), the STAT3 pathway was inhibited, and miR-124 reversed gCSC-mediated immunosuppression of T-cell proliferation and induction of forkhead box P3 (Foxp3)(+) regulatory T cells (Treg). Treatment of T cells from immunosuppressed glioblastoma patients with miR-124 induced marked effector response including upregulation of interleukin (IL)-2, IFN-γ, and TNF-α. Both systemic administration of miR-124 or adoptive miR-124-transfected T-cell transfers exerted potent anti-glioma therapeutic effects in clonotypic and genetically engineered murine models of glioblastoma and enhanced effector responses in the local tumor microenvironment. These therapeutic effects were ablated in both CD4(+)- and CD8(+)-depleted mice and nude mouse systems, indicating that the therapeutic effect of miR-124 depends on the presence of a T-cell-mediated antitumor immune response. Our findings highlight the potential application of miR-124 as a novel immunotherapeutic agent for neoplasms and serve as a model for identifying miRNAs that can be exploited as immunotherapeutics.
ISSN:0008-5472
1538-7445
DOI:10.1158/0008-5472.CAN-12-4318