Cross-Species Protein Interactome Mapping Reveals Species-Specific Wiring of Stress-Response Pathways1
The fission yeast Schizosaccharomyces pombe has more metazoan-like features than the budding yeast Saccharomyces cerevisiae , yet it has similarly facile genetics. Here, we present a large-scale verified binary protein-protein interactome network, “StressNet”, based on high-throughput yeast two-hybr...
Gespeichert in:
Veröffentlicht in: | Science signaling 2013-05, Vol.6 (276), p.ra38-ra38 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The fission yeast
Schizosaccharomyces pombe
has more metazoan-like features than the budding yeast
Saccharomyces cerevisiae
, yet it has similarly facile genetics. Here, we present a large-scale verified binary protein-protein interactome network, “StressNet”, based on high-throughput yeast two-hybrid screens of interacting proteins classified as part of stress-response and signal transduction pathways in
S. pombe
. We performed systematic, cross-species interactome mapping using StressNet and a protein interactome network of orthologous proteins in
S. cerevisiae
. With cross-species comparative network studies, we detected a previously unidentified component (Snr1) of the
S. pombe
mitogen-activated protein kinase Sty1 pathway. Coimmunoprecipitation experiments showed that Snr1 interacted with Sty1 and that deletion of
snr1
increased the sensitivity of
S. pombe
cells to stress. Comparison of StressNet with the interactome network of orthologous proteins in
S. cerevisiae
showed that the majority of interactions among these stress-response and signaling proteins are not conserved between species, but are “rewired;” orthologous proteins have different binding partners in both species. In particular, transient interactions connecting proteins in different functional modules were more likely to be rewired than conserved. By directly testing interactions between proteins in one yeast species and their corresponding binding partners in the other yeast species with yeast two-hybrid assays, we found that about half of the interactions traditionally considered “conserved” form modified interaction interfaces that may potentially accommodate novel functions. |
---|---|
ISSN: | 1937-9145 |
DOI: | 10.1126/scisignal.2003350 |