Aminoacylating Urzymes Challenge the RNA World Hypothesis

We describe experimental evidence that ancestral peptide catalysts substantially accelerated development of genetic coding. Structurally invariant 120–130-residue Urzymes (Ur = primitive plus enzyme) derived from Class I and Class II aminoacyl-tRNA synthetases (aaRSs) acylate tRNA far faster than th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2013-09, Vol.288 (37), p.26856-26863
Hauptverfasser: Li, Li, Francklyn, Christopher, Carter, Charles W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We describe experimental evidence that ancestral peptide catalysts substantially accelerated development of genetic coding. Structurally invariant 120–130-residue Urzymes (Ur = primitive plus enzyme) derived from Class I and Class II aminoacyl-tRNA synthetases (aaRSs) acylate tRNA far faster than the uncatalyzed rate of nonribosomal peptide bond formation from activated amino acids. These new data allow us to demonstrate statistically indistinguishable catalytic profiles for Class I and II aaRSs in both amino acid activation and tRNA acylation, over a time period extending to well before the assembly of full-length enzymes and even further before the Last Universal Common Ancestor. Both Urzymes also exhibit ∼60% of the contemporary catalytic proficiencies. Moreover, they are linked by ancestral sense/antisense genetic coding, and their evident modularities suggest descent from even simpler ancestral pairs also coded by opposite strands of the same gene. Thus, aaRS Urzymes substantially pre-date modern aaRS but are, nevertheless, highly evolved. Their unexpectedly advanced catalytic repertoires, sense/antisense coding, and ancestral modularities imply considerable prior protein-tRNA co-evolution. Further, unlike ribozymes that motivated the RNA World hypothesis, Class I and II Urzyme·tRNA pairs represent consensus ancestral forms sufficient for codon-directed synthesis of nonrandom peptides. By tracing aaRS catalytic activities back to simpler ancestral peptides, we demonstrate key steps for a simpler and hence more probable peptide·RNA development of rapid coding systems matching amino acids with anticodon trinucleotides. Background: RNA World scenarios require high initial fidelity, greatly slowing lift-off. Results: Class I TrpRS and Class II HisRS Urzymes (120–130 residues) both acylate tRNAs ∼106 times faster than the uncatalyzed peptide synthesis rate. Conclusion: Urzymes appear highly evolved, implying that they had even simpler ancestors. Significance: High Urzyme catalytic proficiencies imply that translation began in a Peptide·RNA World.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M113.496125