Iron depletion increases manganese uptake and potentiates apoptosis through ER stress
•Diet-induced iron deficiency potentiated Mn-induced neuronal apoptotic cell death in rat brain.•Mn induced cell cytotoxicity was potentiated by iron depletion.•Iron depletion by DFO increased DMT1-mediated Mn uptake.•Iron depletion enhanced Mn-induced ER stress genes and activation of caspase-12 an...
Gespeichert in:
Veröffentlicht in: | Neurotoxicology (Park Forest South) 2013-09, Vol.38, p.67-73 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | •Diet-induced iron deficiency potentiated Mn-induced neuronal apoptotic cell death in rat brain.•Mn induced cell cytotoxicity was potentiated by iron depletion.•Iron depletion by DFO increased DMT1-mediated Mn uptake.•Iron depletion enhanced Mn-induced ER stress genes and activation of caspase-12 and -3.•Inhibition of caspase activity and ER stress provides neuroprotection.
Iron deficiency is a risk factor for manganese (Mn) accumulation. Excess Mn promotes neurotoxicity but the mechanisms involved and whether iron depletion might affect these pathways is unknown. To study Mn intoxication in vivo, iron deficient and control rats were intranasally instilled with 60mg MnCl2/kg over 3 weeks. TUNEL staining of olfactory tissue revealed that Mn exposure induced apoptosis and that iron deficiency potentiated this effect. In vitro studies using the dopaminergic SH-SY5Y cell line confirmed that Mn-induced apoptosis was enhanced by iron depletion using the iron chelator desferrioxamine. Mn has been reported to induce apoptosis through endoplasmic reticulum stress. In SH-SY5Y cells, Mn exposure induced the ER stress genes glucose regulated protein 94 (GRP94) and C/EBP homologous protein (CHOP). Increased phosphorylation of the eukaryotic translation initiation factor 2α (phospho-eIF2α) was also observed. These effects were accompanied by the activation of ER resident enzyme caspase-12, and the downstream apoptotic effector caspase-3 was also activated. All of the Mn-induced responses were enhanced by DFO treatment. Inhibitors of ER stress and caspases significantly blocked Mn-induced apoptosis and its potentiation by DFO, indicating that ER stress and subsequent caspase activation underlie cell death. Taken together, these data reveal that Mn induces neuronal cell death through ER stress and the UPR response pathway and that this apoptotic effect is potentiated by iron deficiency most likely through upregulation of DMT1. |
---|---|
ISSN: | 0161-813X 1872-9711 |
DOI: | 10.1016/j.neuro.2013.06.002 |