TW-37, a small-molecule inhibitor of Bcl-2, inhibits cell growth and invasion in pancreatic cancer

Bcl-2 family of proteins plays critical roles in human cancers, including pancreatic cancer, suggesting that the discovery of specific agents targeting Bcl-2 family proteins would be extremely valuable for pancreatic cancer therapy. We have previously reported the synthesis and characterization of T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of cancer 2008-08, Vol.123 (4), p.958-966
Hauptverfasser: ZHIWEI WANG, WEN SONG, ABOUKAMEEL, Amro, MOHAMMAD, Mussop, GUOPING WANG, BANERJEE, Sanjeev, DEJUAN KONG, SHAOMENG WANG, SARKAR, Fazlul H, MOHAMMAD, Ramzi M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bcl-2 family of proteins plays critical roles in human cancers, including pancreatic cancer, suggesting that the discovery of specific agents targeting Bcl-2 family proteins would be extremely valuable for pancreatic cancer therapy. We have previously reported the synthesis and characterization of TW-37, which seems to be a negative regulator of Bcl-2. In this investigation, we tested our hypothesis whether TW-37 could be an effective inhibitor of cell growth, invasion and angiogenesis in pancreatic cancer cells. Using multiple cellular and molecular approaches such as MTT assay, apoptosis enzyme-linked immunosorbent assay, real-time reverse transcription-polymerase chain reaction, Western blotting, electrophoretic mobility shift assay for measuring DNA binding activity of NF-kappaB, migration, invasion and angiogenesis assays, we found that TW-37, in nanomolar concentrations, inhibited cell growth in a dose- and time-dependent manner. This was accompanied by increased apoptosis and concomitant attenuation of NF-kappaB, and downregulation of NF-kappaB downstream genes such as MMP-9 and VEGF, resulting in the inhibition of pancreatic cancer cell migration, invasion and angiogenesis in vitro and caused antitumor activity in vivo. From these results, we conclude that TW-37 is a potent inhibitor of progression of pancreatic cancer cells, which could be due to attenuation of Bcl-2 cellular signaling processes. Our findings provide evidence showing that TW-37 could act as a small-molecule Bcl-2 inhibitor on well-characterized pancreatic cancer cells in culture as well as when grown as tumor in a xenograft model. We also suggest that TW-37 could be further developed as a potential therapeutic agent for the treatment of pancreatic cancer.
ISSN:0020-7136
1097-0215
DOI:10.1002/ijc.23610