GluR6-FasL-Trx2 mediates denitrosylation and activation of procaspase-3 in cerebral ischemia/reperfusion in rats
Global cerebral ischemia/reperfusion (I/R) facilitates the activation of procaspase-3 and promotes apoptosis in hippocampus. But the mechanisms have remained uncharacterized. Protein S-nitrosylation and denitrosylation is an important reversible posttranslational modification, which is a common mech...
Gespeichert in:
Veröffentlicht in: | Cell death & disease 2013-08, Vol.4 (8), p.e771-e771 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Global cerebral ischemia/reperfusion (I/R) facilitates the activation of procaspase-3 and promotes apoptosis in hippocampus. But the mechanisms have remained uncharacterized. Protein S-nitrosylation and denitrosylation is an important reversible posttranslational modification, which is a common mechanism in signal transduction and affects numerous physiological and pathophysiological events. However, it is not known whether S-nitrosylation/denitrosylation modification of procaspase-3 serves as a component of apoptosis and cell death induced by cerebral I/R. Here we show that procaspase-3 is significantly denitrosylated and activated after I/R in rat hippocampus. NS102, a glutamate receptor 6 (GluR6) antagonist, can inhibit the denitrosylation of procaspase-3 and diminish the increased Fas ligand (FasL) and thioredoxin (Trx)-2 expression induced by cerebral I/R. Moreover, downregulation of FasL expression by antisense oligodeoxynucleotides inhibits the denitrosylation and activation of procaspase-3. Auranofin, a TrxR inhibitor or TrxR2 antisense oligodeoxynucleotide, has similar effects. In primary hippocampal cultures, Lentiviral-mediated knockdown of FasL and TrxR2 before the oxygen and glucose deprivation/reoxygenation further verifies that FasL and TrxR2 are involved in the denitrosylation of procaspase-3.
In situ
TUNEL staining and cresyl violet staining validate that inhibiting denitrosylation of procaspase-3 may exert neuroprotective effect on apoptosis and cell death induced by cerebral I/R in hippocampal CA1 pyramidal neurons. This is the first evidence that cerebral I/R mediates procaspase-3 denitrosylation and activation through GluR6-FasL-Trx2 pathway, which leads to neuronal apoptosis and cell death. |
---|---|
ISSN: | 2041-4889 2041-4889 |
DOI: | 10.1038/cddis.2013.299 |