SEPT9_i1 is required for the association between HIF-1α and importin-α to promote efficient nuclear translocation

Septin 9 isoform 1 (SEPT9_i1) protein associates with hypoxia-inducible factor (HIF)-1α to augment HIF-1 transcriptional activity. The first 25 amino acids of SEPT9_i1 (N 25 ) are unique compared with other members of the mammalian septin family. This N 25 domain is critical for HIF-1 activation by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell cycle (Georgetown, Tex.) Tex.), 2013-07, Vol.12 (14), p.2297-2308
Hauptverfasser: Golan, Maya, Mabjeesh, Nicola J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Septin 9 isoform 1 (SEPT9_i1) protein associates with hypoxia-inducible factor (HIF)-1α to augment HIF-1 transcriptional activity. The first 25 amino acids of SEPT9_i1 (N 25 ) are unique compared with other members of the mammalian septin family. This N 25 domain is critical for HIF-1 activation by SEPT9_i1 but not essential for the protein-protein interaction. Here, we show that expression of N 25 induces a significant dose-dependent inhibition of HIF-1 transcriptional activity under normoxia and hypoxia without influencing cellular HIF-1α protein levels. In vivo, N 25 expression inhibits proliferation, tumor growth and angiogenesis concomitant with decreased expression levels of intratumoral HIF-1 downstream genes. Depletion of endogenous SEPT9_i1 or the exogenous expression of N 25 fragment reduces nuclear HIF-1α levels accompanied by reciprocal accumulation of HIF-1α in the cytoplasm. Mechanistically, SEPT9_i1 binds to importin-α through N 25 depending on its bipartite nuclear localization signal, to scaffold the association between HIF-1α and importin-α, which leads to facilitating HIF-1α nuclear translocation. Our data explore a new and a previously unrecognized role of a septin protein in the cytoplasmic-nuclear translocation process. This new level in the regulation of HIF-1α translocation is critical for efficient HIF-1 transcriptional activation that could be targeted for cancer therapeutics.
ISSN:1538-4101
1551-4005
DOI:10.4161/cc.25379