The protective effect of recombinant Lactococcus lactis oral vaccine on a Clostridium difficile-infected animal model

Oral immunization with vaccines may be an effective strategy for prevention of Clostridium difficile infection (CDI). However, application of previously developed vaccines for preventing CDI has been limited due to various reasons. Here, we developed a recombinant Lactococcus lactis oral vaccine and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC gastroenterology 2013-07, Vol.13 (1), p.117-117, Article 117
Hauptverfasser: Yang, Xiao-qiang, Zhao, Ya-gang, Chen, Xue-qing, Jiang, Bo, Sun, Da-yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Oral immunization with vaccines may be an effective strategy for prevention of Clostridium difficile infection (CDI). However, application of previously developed vaccines for preventing CDI has been limited due to various reasons. Here, we developed a recombinant Lactococcus lactis oral vaccine and evaluated its effect on a C. difficile-infected animal model established in golden hamsters in attempt to provide an alternative strategy for CDI prevention. Recombinant L. lactis vaccine was developed using the pTRKH2 plasmid, a high-copy-number Escherichia coli-L. shuttle vector: 1) L. lactis expressing secreted proteins was constructed with recombinant pTRKH2 (secreted-protein plasmid) carrying the Usp45 signal peptide (SPUsp45), nontoxic adjuvanted tetanus toxin fragment C (TETC), and 14 of the 38 C-terminal repeats (14CDTA) of nontoxic C. difficile toxin A (TcdA); and 2) L. lactis expressing secreted and membrane proteins was constructed with recombinant pTRKH2 (membrane-anchored plasmid) carrying SPUsp45, TETC, 14CDTA, and the cell wall-anchored sequence of protein M6 (cwaM6). Then, 32 male Syrian golden hamsters were randomly divided into 4 groups (n = 8 each) for gavage of normal saline (blank control) and L. lactis carrying the empty shuttle vector, secreted-protein plasmid, and membrane-anchored plasmid, respectively. After 1-week gavage of clindamycin, the animals were administered with C. difficile spore suspension. General symptoms and intestinal pathological changes of the animals were examined by naked eye and microscopy, respectively. Protein levels of anti-TcdA IgG/IgA antibodies in intestinal tissue and fluid were analyzed by enzyme-linked immunosorbent assay (ELISA). A cell culture cytotoxicity neutralization assay was done by TcdA treatment with or without anti-TcdA serum pre-incubation or treatment. Apoptosis of intestinal epithelial cells was examined by flow cytometry (FL) assay. Expression of mucosal inflammatory cytokines in the animals was detected by polymer chain reaction (PCR) assay. After the C. difficile challenge, the animals of control group had severe diarrhea symptoms on day 1 and all died on day 4, indicating that the CDI animal model was established in hamster. Of the 3 immunization groups, secreted-protein and membrane-anchored plasmid groups had significantly lower mortalities, body weight decreases, and pathological scores, with higher survival rate/time than the empty plasmid group (P 
ISSN:1471-230X
1471-230X
DOI:10.1186/1471-230X-13-117