The STRA6 Receptor Is Essential for Retinol-binding Protein-induced Insulin Resistance but Not for Maintaining Vitamin A Homeostasis in Tissues Other Than the Eye

The plasma membrane protein STRA6 is thought to mediate uptake of retinol from its blood carrier retinol-binding protein (RBP) into cells and to function as a surface receptor that, upon binding of holo-RBP, activates a JAK/STAT cascade. It was suggested that STRA6 signaling underlies insulin resist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2013-08, Vol.288 (34), p.24528-24539
Hauptverfasser: Berry, Daniel C., Jacobs, Hugues, Marwarha, Gurdeep, Gely-Pernot, Aurore, O'Byrne, Sheila M., DeSantis, David, Klopfenstein, Muriel, Feret, Betty, Dennefeld, Christine, Blaner, William S., Croniger, Colleen M., Mark, Manuel, Noy, Noa, Ghyselinck, Norbert B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The plasma membrane protein STRA6 is thought to mediate uptake of retinol from its blood carrier retinol-binding protein (RBP) into cells and to function as a surface receptor that, upon binding of holo-RBP, activates a JAK/STAT cascade. It was suggested that STRA6 signaling underlies insulin resistance induced by elevated serum levels of RBP in obese animals. To investigate these activities in vivo, we generated and analyzed Stra6-null mice. We show that the contribution of STRA6 to retinol uptake by tissues in vivo is small and that, with the exception of the eye, ablation of Stra6 has only a modest effect on retinoid homeostasis and does not impair physiological functions that critically depend on retinoic acid in the embryo or in the adult. However, ablation of Stra6 effectively protects mice from RBP-induced suppression of insulin signaling. Thus one biological function of STRA6 in tissues other than the eye appears to be the coupling of circulating holo-RBP levels to cell signaling, in turn regulating key processes such as insulin response. Background: STRA6 transports retinol into cells and activates cell signaling. Results: Ablation of Stra6 does not impair vitamin A homeostasis in tissues other than the eye but protects mice against RBP-induced insulin resistance. Conclusion: One major function of STRA6 is to control cell signaling. Significance: The data point at a new function for vitamin A and its blood carrier RBP.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M113.484014