Combining genome-wide methods to investigate the genetic complexity of courtship song variation in Drosophila melanogaster

Little is currently known about the genetic complexity of quantitative behavioral variation, the types of genes involved, or their effects on intermediate phenotypes. Here, we conduct a genome-wide association study of Drosophila melanogaster courtship song variation using 168 sequenced inbred lines...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular biology and evolution 2013-09, Vol.30 (9), p.2113-2120
Hauptverfasser: Turner, Thomas L, Miller, Paige M, Cochrane, Veronica A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Little is currently known about the genetic complexity of quantitative behavioral variation, the types of genes involved, or their effects on intermediate phenotypes. Here, we conduct a genome-wide association study of Drosophila melanogaster courtship song variation using 168 sequenced inbred lines, and fail to find highly significant associations. However, by combining these data with results from a well-powered Evolve and Resequence (E&R) study on the same trait, we provide statistical evidence that some power to associate genotype and phenotype is available. Genes that are significant in both analyses are enriched for expression in the nervous system, and affect neural development and synaptic growth when perturbed. Quantitative complementation at one of these loci, Syntrophin-like 1, supports a hypothesis that variation at this locus affects variation in the inter-pulse interval of courtship song. These results suggest that experimental evolution may provide an approach for genome-scale replication in Drosophila.
ISSN:0737-4038
1537-1719
DOI:10.1093/molbev/mst111