Heparan sulfate on intestinal epithelial cells plays a critical role in intestinal crypt homeostasis via Wnt/β-catenin signaling

Heparan sulfate (HS), a constituent of HS proteoglycans (HSPGs), is a linear polysaccharide present on the cell surface. HSPGs modulate functions of several growth factors and signaling molecules. We examined whether small intestinal epithelial HS plays some roles in crypt homeostasis using intestin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology: Gastrointestinal and liver physiology 2013-08, Vol.305 (3), p.G241-G249
Hauptverfasser: Yamamoto, Shuji, Nakase, Hiroshi, Matsuura, Minoru, Honzawa, Yusuke, Matsumura, Kayoko, Uza, Norimitsu, Yamaguchi, Yu, Mizoguchi, Emiko, Chiba, Tsutomu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Heparan sulfate (HS), a constituent of HS proteoglycans (HSPGs), is a linear polysaccharide present on the cell surface. HSPGs modulate functions of several growth factors and signaling molecules. We examined whether small intestinal epithelial HS plays some roles in crypt homeostasis using intestinal epithelium cell (IEC)-specific HS-deficient C57Bl/6 mice. Survival rate after total body irradiation was significantly reduced in HS-deficient mice due to profound intestinal injury. HS-deficient IECs exhibited Wnt/β-catenin pathway disruption, decreased levels of β-catenin nuclear localization, and reduced expression of Wnt target genes, including Lgr5 during crypt regeneration. Moreover, epithelial HS increased Wnt binding affinity of IECs, promoted phosphorylation of Wnt coreceptor LRP6, and enhanced Wnt/β-catenin signaling following ex vivo stimulation with Wnt3a, whereas activation of canonical Wnt signaling following direct inhibition of glycogen synthase kinase-3β by lithium chloride was similar between HS-deficient and wild-type mice. Thus HS influences the binding affinity of IECs to Wnt, thereby promoting activation of canonical Wnt signaling and facilitating regeneration of small intestinal crypts after epithelial injury.
ISSN:0193-1857
1522-1547
DOI:10.1152/ajpgi.00480.2012