Targeting of TAK1 by the NF-kappa B protein Relish regulates the JNK-mediated immune response in Drosophila
The molecular circuitry underlying innate immunity is constructed of multiple, evolutionarily conserved signaling modules with distinct regulatory targets. The MAP kinases and the IKK-NF-kappa B molecules play important roles in the initiation of immune effector responses. We have found that the Dro...
Gespeichert in:
Veröffentlicht in: | Genes & development 2004-03, Vol.18 (5), p.584-594 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The molecular circuitry underlying innate immunity is constructed of multiple, evolutionarily conserved signaling modules with distinct regulatory targets. The MAP kinases and the IKK-NF-kappa B molecules play important roles in the initiation of immune effector responses. We have found that the Drosophila NF-kappa B protein Relish plays a crucial role in limiting the duration of JNK activation and output in response to Gram-negative infections. Relish activation is linked to proteasomal degradation of TAK1, the upstream MAP kinase kinase kinase required for JNK activation. Degradation of TAK1 leads to a rapid termination of JNK signaling, resulting in a transient JNK-dependent response that precedes the sustained induction of Relish-dependent innate immune loci. Because the IKK-NF-kappa B module also negatively regulates JNK activation in mammals, thereby controlling inflammation-induced apoptosis, the regulatory cross-talk between the JNK and NF-kappa B pathways appears to be broadly conserved. |
---|---|
ISSN: | 0890-9369 1549-5477 |
DOI: | 10.1101/gad.1168104 |