Computational Elucidation of Structural Basis for Ligand Binding with Leishmania donovani Adenosine Kinase

Enzyme adenosine kinase is responsible for phosphorylation of adenosine to AMP and is crucial for parasites which are purine auxotrophs. The present study describes development of robust homology model of Leishmania donovani adenosine kinase to forecast interaction phenomenon with inhibitory molecul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BioMed research international 2013-01, Vol.2013 (2013), p.1-14
Hauptverfasser: Das, Pradeep, Sahoo, Ganesh C., Sahoo, Bikash Ranjan, Suryadevara, Priyanka, Ansari, Md. Yousuf, Kar, Rajiv K., Dikhit, Manas R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Enzyme adenosine kinase is responsible for phosphorylation of adenosine to AMP and is crucial for parasites which are purine auxotrophs. The present study describes development of robust homology model of Leishmania donovani adenosine kinase to forecast interaction phenomenon with inhibitory molecules using structure-based drug designing strategy. Docking calculation using reported organic small molecules and natural products revealed key active site residues such as Arg131 and Asp16 for ligand binding, which is consistent with previous studies. Molecular dynamics simulation of ligand protein complex revealed the importance of hydrogen bonding with active site residues and solvent molecules, which may be crucial for successful development of drug candidates. Precise role of Phe168 residue in the active site was elucidated in this report that provided stability to ligand-protein complex via aromatic-π contacts. Overall, the present study is believed to provide valuable information to design a new compound with improved activity for antileishmanial therapeutics development.
ISSN:2314-6133
2314-6141
DOI:10.1155/2013/609289