Divin: A Small Molecule Inhibitor of Bacterial Divisome Assembly

Bacterial cell division involves the dynamic assembly of division proteins and coordinated constriction of the cell envelope. A wide range of factors regulates cell divisionincluding growth and environmental stressesand the targeting of the division machinery has been a widely discussed approach f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2013-07, Vol.135 (26), p.9768-9776
Hauptverfasser: Eun, Ye-Jin, Zhou, Maoquan, Kiekebusch, Daniela, Schlimpert, Susan, Trivedi, Rishi R, Bakshi, Somenath, Zhong, Zhou, Wahlig, Taylor A, Thanbichler, Martin, Weibel, Douglas B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bacterial cell division involves the dynamic assembly of division proteins and coordinated constriction of the cell envelope. A wide range of factors regulates cell divisionincluding growth and environmental stressesand the targeting of the division machinery has been a widely discussed approach for antimicrobial therapies. This paper introduces divin, a small molecule inhibitor of bacterial cell division that may facilitate mechanistic studies of this process. Divin disrupts the assembly of late division proteins, reduces peptidoglycan remodeling at the division site, and blocks compartmentalization of the cytoplasm. In contrast to other division inhibitors, divin does not interact with the tubulin homologue FtsZ, affect chromosome segregation, or activate regulatory mechanisms that inhibit cell division indirectly. Our studies of bacterial cell division using divin as a probe suggest that dividing bacteria proceed through several morphological stages of the cell envelope, and FtsZ is required but not sufficient to compartmentalize the cytoplasmic membrane at the division site. Divin is only moderately toxic to mammalian cells at concentrations that inhibit the growth of clinical pathogens. These characteristics make divin a useful probe for studying bacterial cell division and a starting point for the development of new classes of therapeutic agents.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja404640f