Fabrication and characterization of biomimetic collagen–apatite scaffolds with tunable structures for bone tissue engineering
The objective of the current study is to prepare a biomimetic collagen–apatite scaffold for improved bone repair and regeneration. A novel bottom–up approach has been developed, which combines a biomimetic self-assembly method with a controllable freeze-casting technology. In this study, the mineral...
Gespeichert in:
Veröffentlicht in: | Acta biomaterialia 2013-07, Vol.9 (7), p.7308-7319 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7319 |
---|---|
container_issue | 7 |
container_start_page | 7308 |
container_title | Acta biomaterialia |
container_volume | 9 |
creator | Xia, Zengmin Yu, Xiaohua Jiang, Xi Brody, Harold D. Rowe, David W. Wei, Mei |
description | The objective of the current study is to prepare a biomimetic collagen–apatite scaffold for improved bone repair and regeneration. A novel bottom–up approach has been developed, which combines a biomimetic self-assembly method with a controllable freeze-casting technology. In this study, the mineralized collagen fibers were generated using a simple one-step co-precipitation method which involved collagen self-assembly and in situ apatite precipitation in a collagen-containing modified simulated body fluid (m-SBF). The precipitates were then subjected to controllable freeze casting, forming scaffolds with either an isotropic equiaxed structure or a unidirectional lamellar structure. These scaffolds were comprised of collagen fibers and poorly crystalline bone-like carbonated apatite nanoparticles. The mineral content in the scaffold could be tailored in the range 0–54wt.% by simply adjusting the collagen content in the m-SBF. Further, the mechanisms of the formation of both the equiaxed and the lamellar scaffolds were investigated, and freezing regimes for equiaxed and lamellar solidification were established. Finally, the bone-forming capability of such prepared scaffolds was evaluated in vivo in a mouse calvarial defect model. It was confirmed that the scaffolds well support new bone formation. |
doi_str_mv | 10.1016/j.actbio.2013.03.038 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3738228</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706113001682</els_id><sourcerecordid>1412519411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c553t-1474f82bdd00833cbbc61ceeb20d4b0dd2e5843fb57b6307d8a3ecb4d93fccc63</originalsourceid><addsrcrecordid>eNqFkktuFDEQhlsIRELgBgi8ZDODX912b5BQRAApEgvI2vKjusejbnuw3YlgA3fIDXMSPJoQYEOkkmyVP_9VLv9N85zgNcGke71da1uMj2uKCVvjfcgHzTGRQq5E28mHdS84XQnckaPmSc5bXAlC5ePmiLK2Ez3nx82PM22St7r4GJAODtmNTlUYkv9-SMYB1Sqzn6F4i2ycJj1CuPl5rXcVKICy1cMQJ5fRlS8bVJagzVTTJS22LAkyGmJCJgZAxee8AIIw-gC1RBifNo8GPWV4drueNBdn776cflidf3r_8fTt-cq2LSsrwgUfJDXOYSwZs8bYjlgAQ7HjBjtHoZWcDaYVpmNYOKkZWMNdzwZrbcdOmjcH3d1iZnAWQkl6UrvkZ52-qai9-vck-I0a46VigklKZRV4dSuQ4tcFclGzzxbqNALEJSvS9ZSRVhBxP8oJbUnPCbkfZa3gvaCcVZQfUJtizgmGu-YJVntHqK06OELtHaHwPvZ9v_j74XeXflugAi8PwKCj0mPyWV18rgotxgTLnvV_Zgf1gy49JJWth2DB-QS2KBf9_3v4Bd3w2AQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1357497243</pqid></control><display><type>article</type><title>Fabrication and characterization of biomimetic collagen–apatite scaffolds with tunable structures for bone tissue engineering</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Xia, Zengmin ; Yu, Xiaohua ; Jiang, Xi ; Brody, Harold D. ; Rowe, David W. ; Wei, Mei</creator><creatorcontrib>Xia, Zengmin ; Yu, Xiaohua ; Jiang, Xi ; Brody, Harold D. ; Rowe, David W. ; Wei, Mei</creatorcontrib><description>The objective of the current study is to prepare a biomimetic collagen–apatite scaffold for improved bone repair and regeneration. A novel bottom–up approach has been developed, which combines a biomimetic self-assembly method with a controllable freeze-casting technology. In this study, the mineralized collagen fibers were generated using a simple one-step co-precipitation method which involved collagen self-assembly and in situ apatite precipitation in a collagen-containing modified simulated body fluid (m-SBF). The precipitates were then subjected to controllable freeze casting, forming scaffolds with either an isotropic equiaxed structure or a unidirectional lamellar structure. These scaffolds were comprised of collagen fibers and poorly crystalline bone-like carbonated apatite nanoparticles. The mineral content in the scaffold could be tailored in the range 0–54wt.% by simply adjusting the collagen content in the m-SBF. Further, the mechanisms of the formation of both the equiaxed and the lamellar scaffolds were investigated, and freezing regimes for equiaxed and lamellar solidification were established. Finally, the bone-forming capability of such prepared scaffolds was evaluated in vivo in a mouse calvarial defect model. It was confirmed that the scaffolds well support new bone formation.</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2013.03.038</identifier><identifier>PMID: 23567944</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Apatite ; Apatites - chemistry ; Biomimetic ; Biomimetic Materials - chemical synthesis ; biomimetics ; Bone Development - physiology ; bone formation ; Bone regeneration ; Bone Regeneration - physiology ; Bone Substitutes - chemical synthesis ; Bones ; Collagen ; Collagen - chemistry ; Collagens ; coprecipitation ; Equipment Design ; Equipment Failure Analysis ; Fibers ; Fibres ; Freeze-drying ; freezing ; Materials Testing ; Mice ; Mice, Transgenic ; mineral content ; mineralization ; nanoparticles ; Precipitation ; Scaffolds ; Self assembly ; Skull Fractures - pathology ; Skull Fractures - surgery ; solidification ; tissue engineering ; Tissue Engineering - instrumentation ; Tissue Scaffolds ; Treatment Outcome</subject><ispartof>Acta biomaterialia, 2013-07, Vol.9 (7), p.7308-7319</ispartof><rights>2013 Acta Materialia Inc.</rights><rights>Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</rights><rights>2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c553t-1474f82bdd00833cbbc61ceeb20d4b0dd2e5843fb57b6307d8a3ecb4d93fccc63</citedby><cites>FETCH-LOGICAL-c553t-1474f82bdd00833cbbc61ceeb20d4b0dd2e5843fb57b6307d8a3ecb4d93fccc63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1742706113001682$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23567944$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xia, Zengmin</creatorcontrib><creatorcontrib>Yu, Xiaohua</creatorcontrib><creatorcontrib>Jiang, Xi</creatorcontrib><creatorcontrib>Brody, Harold D.</creatorcontrib><creatorcontrib>Rowe, David W.</creatorcontrib><creatorcontrib>Wei, Mei</creatorcontrib><title>Fabrication and characterization of biomimetic collagen–apatite scaffolds with tunable structures for bone tissue engineering</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>The objective of the current study is to prepare a biomimetic collagen–apatite scaffold for improved bone repair and regeneration. A novel bottom–up approach has been developed, which combines a biomimetic self-assembly method with a controllable freeze-casting technology. In this study, the mineralized collagen fibers were generated using a simple one-step co-precipitation method which involved collagen self-assembly and in situ apatite precipitation in a collagen-containing modified simulated body fluid (m-SBF). The precipitates were then subjected to controllable freeze casting, forming scaffolds with either an isotropic equiaxed structure or a unidirectional lamellar structure. These scaffolds were comprised of collagen fibers and poorly crystalline bone-like carbonated apatite nanoparticles. The mineral content in the scaffold could be tailored in the range 0–54wt.% by simply adjusting the collagen content in the m-SBF. Further, the mechanisms of the formation of both the equiaxed and the lamellar scaffolds were investigated, and freezing regimes for equiaxed and lamellar solidification were established. Finally, the bone-forming capability of such prepared scaffolds was evaluated in vivo in a mouse calvarial defect model. It was confirmed that the scaffolds well support new bone formation.</description><subject>Animals</subject><subject>Apatite</subject><subject>Apatites - chemistry</subject><subject>Biomimetic</subject><subject>Biomimetic Materials - chemical synthesis</subject><subject>biomimetics</subject><subject>Bone Development - physiology</subject><subject>bone formation</subject><subject>Bone regeneration</subject><subject>Bone Regeneration - physiology</subject><subject>Bone Substitutes - chemical synthesis</subject><subject>Bones</subject><subject>Collagen</subject><subject>Collagen - chemistry</subject><subject>Collagens</subject><subject>coprecipitation</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Fibers</subject><subject>Fibres</subject><subject>Freeze-drying</subject><subject>freezing</subject><subject>Materials Testing</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>mineral content</subject><subject>mineralization</subject><subject>nanoparticles</subject><subject>Precipitation</subject><subject>Scaffolds</subject><subject>Self assembly</subject><subject>Skull Fractures - pathology</subject><subject>Skull Fractures - surgery</subject><subject>solidification</subject><subject>tissue engineering</subject><subject>Tissue Engineering - instrumentation</subject><subject>Tissue Scaffolds</subject><subject>Treatment Outcome</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkktuFDEQhlsIRELgBgi8ZDODX912b5BQRAApEgvI2vKjusejbnuw3YlgA3fIDXMSPJoQYEOkkmyVP_9VLv9N85zgNcGke71da1uMj2uKCVvjfcgHzTGRQq5E28mHdS84XQnckaPmSc5bXAlC5ePmiLK2Ez3nx82PM22St7r4GJAODtmNTlUYkv9-SMYB1Sqzn6F4i2ycJj1CuPl5rXcVKICy1cMQJ5fRlS8bVJagzVTTJS22LAkyGmJCJgZAxee8AIIw-gC1RBifNo8GPWV4drueNBdn776cflidf3r_8fTt-cq2LSsrwgUfJDXOYSwZs8bYjlgAQ7HjBjtHoZWcDaYVpmNYOKkZWMNdzwZrbcdOmjcH3d1iZnAWQkl6UrvkZ52-qai9-vck-I0a46VigklKZRV4dSuQ4tcFclGzzxbqNALEJSvS9ZSRVhBxP8oJbUnPCbkfZa3gvaCcVZQfUJtizgmGu-YJVntHqK06OELtHaHwPvZ9v_j74XeXflugAi8PwKCj0mPyWV18rgotxgTLnvV_Zgf1gy49JJWth2DB-QS2KBf9_3v4Bd3w2AQ</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Xia, Zengmin</creator><creator>Yu, Xiaohua</creator><creator>Jiang, Xi</creator><creator>Brody, Harold D.</creator><creator>Rowe, David W.</creator><creator>Wei, Mei</creator><general>Elsevier Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7QP</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>20130701</creationdate><title>Fabrication and characterization of biomimetic collagen–apatite scaffolds with tunable structures for bone tissue engineering</title><author>Xia, Zengmin ; Yu, Xiaohua ; Jiang, Xi ; Brody, Harold D. ; Rowe, David W. ; Wei, Mei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c553t-1474f82bdd00833cbbc61ceeb20d4b0dd2e5843fb57b6307d8a3ecb4d93fccc63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Apatite</topic><topic>Apatites - chemistry</topic><topic>Biomimetic</topic><topic>Biomimetic Materials - chemical synthesis</topic><topic>biomimetics</topic><topic>Bone Development - physiology</topic><topic>bone formation</topic><topic>Bone regeneration</topic><topic>Bone Regeneration - physiology</topic><topic>Bone Substitutes - chemical synthesis</topic><topic>Bones</topic><topic>Collagen</topic><topic>Collagen - chemistry</topic><topic>Collagens</topic><topic>coprecipitation</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Fibers</topic><topic>Fibres</topic><topic>Freeze-drying</topic><topic>freezing</topic><topic>Materials Testing</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>mineral content</topic><topic>mineralization</topic><topic>nanoparticles</topic><topic>Precipitation</topic><topic>Scaffolds</topic><topic>Self assembly</topic><topic>Skull Fractures - pathology</topic><topic>Skull Fractures - surgery</topic><topic>solidification</topic><topic>tissue engineering</topic><topic>Tissue Engineering - instrumentation</topic><topic>Tissue Scaffolds</topic><topic>Treatment Outcome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Zengmin</creatorcontrib><creatorcontrib>Yu, Xiaohua</creatorcontrib><creatorcontrib>Jiang, Xi</creatorcontrib><creatorcontrib>Brody, Harold D.</creatorcontrib><creatorcontrib>Rowe, David W.</creatorcontrib><creatorcontrib>Wei, Mei</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Zengmin</au><au>Yu, Xiaohua</au><au>Jiang, Xi</au><au>Brody, Harold D.</au><au>Rowe, David W.</au><au>Wei, Mei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication and characterization of biomimetic collagen–apatite scaffolds with tunable structures for bone tissue engineering</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2013-07-01</date><risdate>2013</risdate><volume>9</volume><issue>7</issue><spage>7308</spage><epage>7319</epage><pages>7308-7319</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>The objective of the current study is to prepare a biomimetic collagen–apatite scaffold for improved bone repair and regeneration. A novel bottom–up approach has been developed, which combines a biomimetic self-assembly method with a controllable freeze-casting technology. In this study, the mineralized collagen fibers were generated using a simple one-step co-precipitation method which involved collagen self-assembly and in situ apatite precipitation in a collagen-containing modified simulated body fluid (m-SBF). The precipitates were then subjected to controllable freeze casting, forming scaffolds with either an isotropic equiaxed structure or a unidirectional lamellar structure. These scaffolds were comprised of collagen fibers and poorly crystalline bone-like carbonated apatite nanoparticles. The mineral content in the scaffold could be tailored in the range 0–54wt.% by simply adjusting the collagen content in the m-SBF. Further, the mechanisms of the formation of both the equiaxed and the lamellar scaffolds were investigated, and freezing regimes for equiaxed and lamellar solidification were established. Finally, the bone-forming capability of such prepared scaffolds was evaluated in vivo in a mouse calvarial defect model. It was confirmed that the scaffolds well support new bone formation.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>23567944</pmid><doi>10.1016/j.actbio.2013.03.038</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-7061 |
ispartof | Acta biomaterialia, 2013-07, Vol.9 (7), p.7308-7319 |
issn | 1742-7061 1878-7568 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3738228 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Animals Apatite Apatites - chemistry Biomimetic Biomimetic Materials - chemical synthesis biomimetics Bone Development - physiology bone formation Bone regeneration Bone Regeneration - physiology Bone Substitutes - chemical synthesis Bones Collagen Collagen - chemistry Collagens coprecipitation Equipment Design Equipment Failure Analysis Fibers Fibres Freeze-drying freezing Materials Testing Mice Mice, Transgenic mineral content mineralization nanoparticles Precipitation Scaffolds Self assembly Skull Fractures - pathology Skull Fractures - surgery solidification tissue engineering Tissue Engineering - instrumentation Tissue Scaffolds Treatment Outcome |
title | Fabrication and characterization of biomimetic collagen–apatite scaffolds with tunable structures for bone tissue engineering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T03%3A23%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20and%20characterization%20of%20biomimetic%20collagen%E2%80%93apatite%20scaffolds%20with%20tunable%20structures%20for%20bone%20tissue%20engineering&rft.jtitle=Acta%20biomaterialia&rft.au=Xia,%20Zengmin&rft.date=2013-07-01&rft.volume=9&rft.issue=7&rft.spage=7308&rft.epage=7319&rft.pages=7308-7319&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2013.03.038&rft_dat=%3Cproquest_pubme%3E1412519411%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1357497243&rft_id=info:pmid/23567944&rft_els_id=S1742706113001682&rfr_iscdi=true |